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Introduction

No matter how wel a survey questionnaire is desgned and no matter how efficient adata
collection procedure is employed, missing vaues dmost dways exist in survey data. There are
two main reasons for missng vaues, survey (or unit) nonresponse and item nonresponse.
Examples of survey nonresponse include when sampled subjects are unable to be contacted;
when sampled subjects refuse to respond atogether; when sampled subjects are found to be
out-of-scope. Examples of item nonresponse include when sampled subjects refuse to answer
certain questions; when sampled subjects are unable to answer certain questions; when
interviewersfail to ask the question or fail to record the answer; when an inconsistent response
is deleted in data editing.

One of the most common methods to compensate for survey nonresponse is through weighting
adjustments; that is, to reassign the weights of the nonrespondents to the respondents.
However, there are some problems with the use of weighting adjustments for dealing with unit
nonresponse (Rubin 1996):

Even in the smplest case of unit nonresponse, where the shared data base of respondentsis
fully observed (1., there is no item nonresponse), many ultimate users complete-data
andyses do not dlow for sampling weights.

Even with complete-data analyses that can ded with sampling weights, the condtruction of
intervas and p-vaues that vadidly account for the fact that nonresponse adjustmentsin the
welghts are estimated from data are not immediate from complete-data analyses.

With generd patterns of nonresponse, specia andysis methods need to be developed and
gpecid software needs to be written.

Weighting adjustments are focused on unbiased estimation and are essentidly blind to
efficiency concerns.

Given these problems with using weighting adjustments, imputation has become one of the
most popular tools used to solve missing vaue problemsin survey data analyses. The use of
imputation to create complete data can have the following advantages.

Data collectors usudly have more insde knowledge about the reasons for the missing
vaues. Thisingde knowledge can be used in imputation;

Missing vaues complicate the data structure, so that more sophisticated satistica tools are
required to conduct analyses. Imputation may ease this difficulty;

Imputation can prevent the loss of information due to deletion of incomplete records if the
datistica methods used (e.g., regression) require complete records;



Imputation can reduce nonresponse biasin some Stuations,

Pairwise correlaion matrices computed from incomplete data may not be positive definite.
Imputation can avoid this problem.

The basic objective of imputation isto dlow ultimate data users to gpply their existing andysis
toolsto any data set with missng vaues using the same command structure and output
gdandards as if there were no missing data. Most imputation methods such as * complete-case
andyss” “avaladle-case andyss” and “fill-in with means’, satidfy this basic objective and so
have a certain gpped. However, it is certainly not enough to just achieve this basic objective.
Another desirable objective is gatisticd vadidity: assuming that the ultimate user’ s complete-data
andydssisdatidicaly vaid for a scientific estimand, the answer that results from applying the
same andysis method to an incomplete-data remains satisticaly vdid for the same scientific
estimand assuming the truth of the database congtructor’ s posited modd for missng data. This
god can be achieved through some imputation methods, but cannot be achieved through others.

It is probably a popular misunderstanding that the god of imputation isto predict individud
missing vaues. Thisis popular because of hot deck imputation methods which atempt to find
the best match (donor) for each missing case. A better estimate for each missing vaue not
necessarily leadsto a better overdl estimate for the parameters of interest. Hereisa
counterexample given by Rubin (1996): suppose we have a coin that, in truth, is biased .6 heads
and 4 tails. Thisknown truth ismode A, whereas modd B asserts that the coin has two heads.
Using modd A for cregting imputations (i.e., future predictions) yieds a hit rate (agreements
between predictions and outcomes) of .6~ .6 + .4~ .4 = .52, whereas usng model B for
predictions yields a hit rate of .6. This does not mean that modd B is better than modd A for
handling missng vaues. Flling in missng vaues usng modd B yiddsthe invalid datidticd
inference that in the future al coin tosses will be heads, clearly incongstent for the estimand Q =
fraction of tossesthat are heads, whereas usng moded A yields consstent estimates for al such
scientific estimands.

Many imputation techniques and imputation software packages have been devel oped over the
years. Different methods may work well under different circumstances. It is advisable to
conduct a sengitivity analyss when choosing an imputation method for a particular survey.

This task reviewed about thirty imputation methods and five imputation software packages.
Eleven of the most popular imputation methods were eval uated through a Monte Carlo
gmulation study.

Thisreport conggts of five chapters. The firgt four chapters are on methodology discussons
based on our review of numerous papers and books. Chapter 1 describes about thirty most
commonly used imputation methods with brief discussons of their strengths and weaknesses.
The imputation methods used across the nationa surveys conducted by the Nationa Center for
Education Statistics (NCES) are dso summarized in this chapter. Chapter 2 discussesfive



imputation software packages. Nonresponse bias correction viaimputation is addressed in
chapter 3. Variance estimation with imputed data and multiple imputation inference is discussed
in chapter 4. Chapter 5 reports the results of the smulation study, which evaluates 11 imputation
methods according to eight evauation criteriafor four types of digributions, five types of missing
mechanisms and four types of missing rates.



Chapter 1  Imputation Algorithms

Imputation methods are generaly classfied into two categories: random (also caled
stochastic) and deterministic. A deterministic imputation method determines one and only one
possible vaue for imputing each missing case. Once the imputation schemeis set up, the
imputation result is unique. On the other hand, arandom imputation method draws imputation
vaues randomly either from the observed data or from the predicted digtribution. Multiple sets
of imputations can be created to capture the uncertainty between imputations viaany random
imputation method. Generally, a random imputation method adds more variahility to the
datistics computed from an imputed data set than a deterministic imputation method.

However, in this chapter, we will discuss imputation techniques under five categories:

Smple determinigtic imputation
Simple random imputation

M odel-based determinigtic imputation
M odel-based random imputation
Bayesan-related imputation methods

It is easy to see that these five categories are not mutualy exclusive; we are using them mainly
for convenience of discussion.

1.1 Simpledeterministic imputation method
1.1.1  Deductive imputation

This method deduces missing vaues from available information, such as Smilar itemsin previous
surveys, related items in current surveys, etc. To apply this method, the user needs to find some
determinigtic relationship between the missing item and items from other resources. Cold deck is
one deductive imputation method that uses information from previous smilar surveys. Generdly,
it isimpossble to find enough informeation to impute dl missng itemsin a survey using deductive
imputation, but this method can be used to impute some of the missing variables. Whenever
possible, deductive imputation should be used before any other imputation method because it
provides accurate or gpproximately accurate imputations for missing cases. However, the
performance of a deductive imputation method completely depends on the available sources.

1.1.2  Ovedl or cdl mean imputation (also caled adjusted mean imputation or substitution
method)

Thisisthe smplest but least attractive imputation method. Overdl mean imputation uses the
overdl sample mean to replace dl missing vaues in the data set. This method can provide
unbiased egtimates for the population means or totals only if the missng vaues are missing
completely a random (MCAR). Cel mean imputation first uses some auxiliary variablesto form



imputation cells, and then replaces missing vaues in each cell with its sample mean. The method
can give unbiased estimates for the population mean or totd if the missng vaues only depend on
the auxiliary variables which are used to congtruct the imputation cells. However, the distribution
of the datawill be distorted substantialy and the concentration of dl imputed values at the cdll
means creates spikes in the digtribution. Therefore, quartile estimates will be biased, and the
variances materidly underestimated.

If the mean imputation method is used, it is advisable to calcul ate the variance- covariance
esimates using adenominator of n-m-1 ingtead of n-1, where n isthe sample sze and misthe
number of cases missing one or both variables for pairwise covariance estimate caculation. We
will cal thisgrategy the adjusted mean imputation (or substitution) method in this report.

Cohen (1996) suggested another way to adjust variance estimates by imputing more diversfied
vauesfor the missng cases. For example, ingtead of imputing the mean for al the missng

values, Cohen suggested imputing haf of the missng vaueswith y, + 1/ n :_r 1 1Dr and the
+r-1

r-1
observed values, and D? = 1
second momentsasobserve(ri

other hlf with y, - D, , wherer isthe number of response vaues, y, isthe mean of

é;(yi -y, )?. Thistype of adjustment will retain the first and

1.1.3  Deerminigtic hot deck imputation

Hot deck imputation is one of the most popular imputation methods because it issmple and
intuitively makes sense to many practitioners who do not have a strong statistical background.
Hot deck imputation does not employ any explicit satistical model. Its mgjor disadvantage is
that it can not recover typica valuesfor objects with certain characterigtics if no such subject
responds to a survey. Hot deck imputation employs many methods. The following are the most
popular deterministic hot deck imputation methods.

(1) Sequential nearest neighbor hot deck imputation. Thismethod is adso cdled
traditional hot deck imputation. Thefirgt step in this method is to use some auxiliary
variables to specify imputation classes. Second, within each imputation class, asingle vaue
such asthe class mean or some pre-specified value is assgned as a Sarting point. Then the
recordsin the data file are treated sequentialy. If arecord has aresponse for the target
variable, that value replaces the previoudy stored vaue for itsimputation class. If arecord
has amissng vaue for the target variable, it is assgned the value currently stored for its
imputation class.

A mgor dtraction of this method isits computing economy, since al imputations are made
in asngle pass through the datafile. A disadvantage is that this method may easily giverise



to multiple use of donors, afeature which leadsto aloss of precison for survey estimators
(Katon and Kasprzyk 1982).

(2) Multivariate matching. In this method, donors and donees are matched on severa
predetermined auxiliary variables. For each missing case in each matched class, the nearest
donor is chosen for imputation. If no donor isfound in amatched class, the classis
combined with other classes to obtain donors.

While this method is not convenient to implement using computer programs, an
gpproximately equivaent imputation agorithm may be used to replace it. The dgorithm firgt
sorts the data file with the same auxiliary variables, and then imputes the nearest response
vaue for each missng case. This dternative method is very easy to implement. The donor
and donee will match on dl auxiliary variablesif such donors are available. Otherwisg, it
will automaticaly find a donor metched on some of the auxiliary varigbles, which is
equivaent to collgpsing the matched classes.

(3) Distance function matching. This method imputes the nearest response vaue for
each missing case according to some univariate distance function of auxiliary variables,
such asthe norm in the multi-dimensiona Euclidean space, Mahaanobis distance, the
difference between the predicted values from aregresson modd, etc.

1.2 Smplerandom imputation methods
1.2.1  Ovedl or cdl mean imputation with random disturbance

To overcome the underestimated variance typica of the mean imputation method (see section
1.1.2), we may add a small disturbance drawn from a distribution with a mean zero and
variance-covariance matrix equa to the observed variance- covariance matrix. Most often a
normal distribution is used to draw the random disturbance.

1.2.2 Random hot deck method

Random hot deck imputation is one of the most popular methodsin practice. It generdly
conggts of three steps: (1) determine auxiliary variables on which donors and donees will match;
(2) randomly draw imputations from observed data according to the observed frequency
(weighted or unweighted) within each matched class; (3) if amatched class does not have any
observed value, combine thet class with other classes and perform imputation based on the
combined imputation classes.

1.2.3  Overdl random imputation

Ovedl random imputation generdly refers to drawing imputation vaues randomly from
observed data using different sampling schemes. The most frequently used schemeis resampling



with or without replacement. It is one of the easiest methods to implement, because it does not
use any auxiliary variables and will not be able to reduce nonresponse biases.

1.2.4  Approximate Bayesan Bootstrap (ABB)

The ABB method first randomly drawsr vaues with replacement from the r observed values
Y,,...,Y, tocreate Y, , and then randomly draws m vaues with replacement from Y, as

imputed vaues for the m missing vaues in the target varigble Y. The ABB method draws
imputations from a resample of the observed data instead of drawing directly from the observed
data. This extra step introduces additiona variation, which makes the ABB method
aoproximately “proper” for multiple imputation according to Rubin’s theory (1987). (This
method is called gpproximately Bayesian Bootstrap because it is gpproximately equivadent to the
Bayesian Bootstrap described below.)

Smilarly to the overdl random imputation method, when ABB imputation is performed for the
overdl sample, it will not be able to reduce nonresponse biases because it does not use any
auxiliary information. ABB imputation may work well for within-classimputationsif the missng
mechanism only depends on the variables used to congtruct the imputation classes.

125 Bayesan Bootstrap (BB)

BB imputation congsts of two steps: (1) draw r-1 uniform random numbers between 0 and 1,
and let their ordered vluesbe a,...,a,_,; a0 let a;=0 and a=1, wherer isthe number of

observed vaues, (2) draw each of the m missng vauesfrom Y,,..., Y, with probabilities
(a; - ), (@, - a7),...,(1- a,_,); that is, independently m times, draw a uniform random
number u, and impute Y if a;_; <u£ a (i=1,2, ...,1).

Rubin (1981) showed that the Bayesian Bootstrap is equivaent to assuming that the prior
digtribution of p isthe (improper) distribution

Prp) =O,_pit,

wherep = (p,,....px) isthevector of probabilities Pr(Y, =d,) =p, é p, =1and
d,,...,d, aedl possbledisinct vauesin Y;,...,Y; . The pogterior distribution of p is

~ K -
Pr(p|Yos) H O, P

wherer, isthe number of y; that equals dy, and é :zlrk = r . The pogterior digributionis a (k-
1) dimengond Dirichlet digribution. The BB method first drawsavauep* of p fromthis



posterior distribution, then independently draw imputations for missing vaues from among
d,,...,d, usng the probabilitiesinp*.

The difference between ABB and BB is that the underlying parameter of the data, which gives
the probabilities of each component in Yyps, IS being drawn from a scaled multinomid with the
ABB rather than from a Dirichlet distribution. Both distributions have the same means and
correlations, but the variances for the ABB method are (1+1/r) times the variances for the BB
method (Rubin 1981).

1.2.6  Within-classrandom imputation

Random hot deck is a specific within-class random imputation method. Two factors may vary
from one method to another in the within-class random imputation methods: how to form the
imputation classes and how to draw imputations within each class. The three most commonly
used methods for congtructing imputation classes are as follows:

(i) Imputation classes are formed using multiple auxiliary variables. Cases matching on
sdected auxiliary variables are classfied into the same imputation class. The disadvantage
of thismethod is that, as the number of auxiliary varigblesincrease, the number of
imputation classes can quickly become enormous. This may limit the use of auxiliary
informetion in the imputation.

(i) Imputation classes are congtructed using regression predicted values from a
multivariate regresson modd. Cases with close predicted vaues are classfied into the
same imputation class. The use of auxiliary variablesis unlimited (at least theoreticaly s0)
with this classfication method. This method was used by imputation software PROC
IMPUTE (verson 2.0, Wise & McLaughlin, 1992).

(i) Imputation classes are congtructed using the propensty score method (Rosenbaum
and Rubin 1983, 1984). In brief, the ideaiis to find a Sngle vaued function b(X) of the
covariates X, with the property that the desrable properties of classfication on X are
inherited by dassfying on b(X). As shown by Rosenbaum and Rubin, the best such score
isthe function e(X), the propendty given X, defined as the conditiona probability of
observing the target variables Y given X. Then, the property that the missng mechaniamis
independent of Y given X, carries over to independence given the propensity score e(X), so
that the imputation is unbiased. The propensity scores can be estimated through logistic
regresson.

ABB and BB (described in sections 1.2.4 and 1.2.5) have already been shown to draw
imputations within each imputation class. The following methods aso do so (Gimotty & Brown
1990).



(1) Resampling using simple random sampling with replacement: Within k-th
imputation class, the imputed vaue is selected randomly with replacement from a
multinomid distribution with parameter vector [ the observed proportions of al possble

categories. Then, given the observed data, the conditional expected value and conditional

variance of p; , the proportion estimates of al possible categories based on the imputed

vauesonly, are
A _ AK _ 1 . T T
B[P, ldata] = p, . Cov{ p, |data] —g(d'ag(gkek)- PP

where my isthe number of missing vauesin k-th imputation class.

(i) Resampling using simple random sampling without replacement: Within k-th
imputation class, each observed valueis used only once as an imputed value. However,
when m>ry, dl observed vaues are used as many times as possible and then asimple
random sample is taken from the observed va ues without replacement and those values
are used asimputed values for the remainder of the nonrespondents. Here, we only
consider myEry. Inthis case, the digtribution of the frequencies of the imputed vauesin
each category is hypergeometric. The conditiona expectation given the dataisthe same as
in (i), wheress the conditiond variance-covariance matrix is given by

L+ N - ,
Coulp, date) = —{dian(p, p)) - p, B}
k k

(i) Randomized strategy using maximum likelihood estimates: L et the proportion
estimate based on the observed databep = (Py ..., Pjyr--s )", then the estimated

frequency is m.p, = (M Py seees M Pjseees My P, ). Then category j isassigned asthe

| |
imputed valueto [m, p,, ] missing cases, which leaves ¢, = é m Py - [M Py, ]° é Cix

j=1 =1
missing vaues un-imputed in the k-th imputation class, where [m, p,, ] isthelargest
integer whichissmaller than m, p,, . Theimputed vaues for these remaining missing values
are independently selected from multinomial distribution with parameter vector ¢, where
c;k = ¢, / ¢, . The conditiond expectation of the imputed proportion is the same as
before, but the conditiond variance-covariance matrix is given by

. C [ . - . s
Cov{p; data] =5 (diag(c; () ) - €i(ci)").

Kk



Method (i) is strictly stochastic and acts to increase the variability of statistics computed from an
imputed data set compared to a deterministic method. Both method (i) and method (jii) may be
determinigtic. Method (i) is deterministic when the number of observations equa's the number of
missing values. Method (jii) is deterministic when m, p,, areintegers for each imputation class.
However, in generd, method (ii) adds more variability than method (jii) and method (i) adds
more variability than method (ii). However, dl of them add less variahility than the ABB and the
BB imputation methods.

1.3 Model-based deter ministic imputation methods

Generdly, “ correctly” modding missing data must be the data congtructor’ s responsibility
because he/she typically knows more about reasons for nonresponse and has access to
confidential and detailed information not released for public use. Model- based approaches will
produce more accurate imputations than randomization-based approaches if the model
assumptions are stified. But the difficulty with modd-based approaches is that those
assumptions are usudly unverifiable in practice and therefore it may not be easy to choose an
appropriate model-based imputation approach for atypica survey. A good model-based
approach would work well for awide range of underlying data distributions and missng
mechanisms

1.3.1 Raioimputation

Suppose that an auxiliary varigble x closely related to the target variable y is observed on dl
sample units. Ratio imputation uses y,; = ;/”“ X, &simputed values for the i-th nonrespondent
rh

in h-th imputation class. This method can be motivated by the fact that y;. isthe best predictor
under the following “ratio” superpopulation modd:

E(Yn) = biX V(yh'):Shthi’ Cov(Yyi» Yr) =0,
provided that the mode holds for both the respondents and nonrespondents.

The ratio imputation method may provide very accurate imputations if the missngness of y
mainly depends on a highly correlated auxiliary varigble x. But thisisavery redtrictive
assumption. In practice, missing vaues are more likely to depend on severd auxiliary varigbles.
Since ratio imputation can use only one auxiliary variable, it is not fully efficient in many
Stuations. One way around thisisto use some auxiliary variables as classification variables, but
thisis gill not a satisfactory solution to the limitation on the efficient use of auxiliary variables. As
the number of dassification varigbles increase, the number of imputation classes quickly
becomes enormous and then some imputation classes may not have sufficient samplesto obtain
farly accurate ratio estimates.
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1.3.2  Predicted regresson imputation

This method uses the predicted vaues from aregresson modd asimputations for dl missng
cases. The predicted vaue Y, isthe best predictor of thei-th unobserved vauey; under the

following super- population modd:
E(y,)=a +b&, V(yi):szy COV(Yi’yj)zo

provided that the mode holds for both the respondents and the nonrespondents. Predicted
regression imputation may aso be performed within each imputation class. The disadvantage of
this method is the shrinkage to the mean phenomenon.

1.3.3 EM dgorithm

The EM dgorithm (Dempster, Laird, and Rubin 1977) conssts of two steps: the E-step

ca culates the expectation of the complete data sufficient statistics given the observed data and
current parameter estimates, and the M-step updates the parameter estimates through the
maximum likelihood gpproach based on the current values of the complete sufficient setistics.
The agorithm then proceedsin an iterative manner until the difference between the lagt two
consecutive parameter estimates converges to a specified criterion. Thefind E-step calculates
the expectation of each missing vaue given the find parameter estimates and the observed data;
thiswill be used as the imputation vaue.

Although the EM dgorithm can be used to impute each individua missing value, it is more often
used to directly obtain estimates for population parameters. Assuming anorma distribution for
the data, both the expectations of the sufficient satigtics in the E-step and the maximum
likelihood estimates of the parametersin the M-step are easy to derive. But it may not be easy
to do so with other distributions. Convergence may be dow and not guaranteed with the EM
agorithm especidly with sparse data. If each M-step aso requires an iterative process to obtain
the maximum likelihood estimates, the convergence process will further be dowed down. This
method aso suffers the shrinkage to the mean phenomenon. The advantage of the EM agorithm
isits stable convergence; that is, iterations dways increase the likdihood.

1.3.4  Dear’sprincipa component method (DPC)
Theimputation strategy using the principa component method consists of three steps:
(DY) Let R={rij} bean n" p missngnessindicator matrix for varigbles X;...X, with n
observations, i.e,, rij =0 or 1 according to whether x;; is missing or observed. Use dll
available cases to calculate the sample mean and variance for each variable, and then

standardize X to Z. Next, use the case-wise-deetion method (delete the whole case if
one variable has amissing vaue on that case) to obtain the corrdation matrix, S.

1



(D2) Cdculatethelargest eégenvdueof S | 4, and its associated elgenvector
h, = (hyy,-+,hy).
(D3) Let thefirgt principa component for theith case be

J
g =a h;zr,,
i=1

so that the points on the first principa component line that are closest to thei-th case
replace the missng varigbles.

iz, if =1

%I if =0
Repeat (D3) for dl cases with missing variables and convert Z° back to X'.

One desirable property of principa component analysisisthat it does not require any
digtributional assumptions for its use. However, since the case-wise-ddetion method is used to
obtain the corrdation matrix S, DPC works poorly for data sets with only afew complete
Cases.

1.35 Genad iterative principa (GIP) component method

To avoid the problems mentioned above and make DPC agenerd purpose method, the
fallowing refinements have been introduced.

(G1) Use dl-avalable-data method to caculate S. If Sis nontpogtive definite, modify it
with the agorithm provided by Huseby, Schwertman, and Allen (1980); or replace dl
missing vaues by the mean and use n-m-1 ingtead of n-1 as the denominator in the
variance-covariance caculationsto obtain S

(G2) Perform D2 and D3 with Sobtained from G1.

(G3) Recdculate Sfrom the imputed data matrix and repeat G2.

(&4) Cydleiteratively through G3 and G2 until successive imputed vaues do not change
materidly.

1.3.6  Singular vdue decompostion (SVD) method
Singular vaue decompostion (SVD) can be used in asmple way to impute data to missing

values (Krzanowski 1988). The method is easy to compute and a description of the steps for
one missing vaue x;; in X followed:



(S1) Omit theith case (row) from X and caculate the SVD of theremaining (n-1)" p data
matrix, denoted by X ' =UDV «with U ={u,}, V ={v,} and
D =diag{d,,--,d,), where U and V are orthonormal matrices (i.e,
Ud =00c=1).

(S2) Omit the jth varigble (column) from X and cdculate the SVD of theremaining n” (p-
1) data metrix, denoted by X_, =UDV with U ={0,}, V ={7,} and

D = diag{d,,-,d, ,}.

(S3) Impute for (i, j)th missng case with

In the case where there is more than one missing value, an iterative scheme can be conducted as
follows gart with any initid imputed va ues such as the mean, and update each initid imputed
vaueinturn usng S3. The processis then iterated until stability is achieved in the imputed
values.

1.3.7 A comparison of ASM, EM, DPC, GIP, and SVD

Belo (1993) conducted asmulation study to compare the five determinigtic imputation
methods: the adjusted mean substitution (AMS), EM dgorithm, DPC, GIP, and SVD. In the
study, Bello's two smulation populations are multivariate norma N (11, S) and t-distribution
with 4 degrees of freedom, T (4,1, S) , where m=0 and S=VL V¢ V isarandomly generated

orthogona matrix and L =diagf{l 1, ..., | o}, |, =wv'"* + 0.1 as used by Bendel (1978), where

i(c- 01p)(1- v)/(1- vP) O<v<l1
W=
% c/p-01 v=1
and cisthetrace of S. Evidently, values of v represent a continuum such thet the

interdependence among the variables increases as v decreases from 1 to 0. The variables are
independent when v=1.

Other varying factors are sample size (n), dimensiondity (p), interdependence among the
variables (v), and missng rate (g). Missing data are created randomly, which actudly resultsin
the ideal missing mechanism, missng completely a random. The number of Monte Carlo
amulaions for each combination of n, p, v, and g wasfixed a 100. The mean square error
(Euclidean norm) of the estimators of S over the 100 Smulations are used asthe main
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comparison criterion. For the estimator of the mean vector, dl the imputation methods are
gmilar snce the data are missng completely a random.

The primary findings of Bello's sudy are as followed:
For multivariate norma distributions:

When the variables are nearly independent (v=0.7) and p<10, the AMS outperforms
the other four regression-like imputation methods. EM agorithm is the second best,
followed by DPC, SVD, and GIP. Thisis not surprisng snce the mean imputations are
obtained under the pretext that the variables are uncorrel ated.

For p>2, as v£0.3, the regressontlike imputation techniques show gppreciable
superiority over the adjusted mean imputation method.

When the missing rate r3 0.10 and n becomes large (° 100), EM is, on the average, the
best technique followed by GIP, SVD, ASM, and DPC.

For multivariate t-digtributions:

Although the principal component and sngular vaue decomposition method can be
presumed to be distributional- assumption-free, this does not mean that DPC, GIP, and
SVD arerobust to structures in data

When v=0.7, the imputation methods behave smilarly to their norma counterparts.

EM—which depends on a normality assumption—is running neck-and-neck with the
digtributiond-free techniques—DPC, GIP, and SVD. When n is sufficiently large (200)
and the variables are strongly dependent (v<0.3) with moderate dimensondity (p=5),
EM outperforms the other imputation techniques. On the other hand, when p=2 and
v=0.3, for any n vdue, GIP isthe mog efficient method.

When p increases, n increases, and v decreases, the regression-like methods become
better and better than ASM.

Thereisinaufficient evidence to discredit the use of EM when the data are markedly
deviate from normdlity especidly when p>2 and reasonably moderate-to-high
interdependence exists among the variables. This remark implicitly suggests that
whatever is known to affect EM—for example, outliers—may aso affect other
imputation techniques as well.

Regarding the computer-time used by these imputation techniques, ASM and DPC are non
iterative techniques and no special computer-time is required. Among the three iterdtive
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methods, the convergence rate of EM was observed to be the dowest, followed by SVD,
and then GIP.

Although the performances of the methods are compared based on the artificial assumption,
MCAR, these results can still be used as references.

1.4 M odel-based random imputation methods
141  Draw imputations from predicted distributions

If some information about the type of data digtribution is available, imputations can be drawvn
from a predicted digtribution. This method assumes a distribution for the data and usesthe
observed data to estimate the unknown parameters in the assumed digtribution. If the
digtribution assumption is gpproximatdly true, this method will give much better imputations than
any method which draws imputations from observed data. Rubin’s example (Rubin 1978) can
illustrate this. Suppose a sample of 1000 units with 500 respondents and 500 nonrespondents.
The 500 respondents look like a haf-normal. If we learn from other sources that the population
is gpproximately norma, then we can use the data of the 500 respondents to obtain the mean
and variance estimates, and draw imputations from the normad digtribution with the estimated
mean and variance. This makesit possible to recover the other hadf of the norma ditribution.
Although thisis an extremdy atificid example, it ispossblein red gpplications that data of
some specific categories are totally or mostly missing. In those cases, methods that draw
imputations from observed data will not be able to recover missing vaues for those categories,
while drawing imputations from a predicted distribution may be able to recover them. The
disadvantage of this method isthat it requiresinformation in order to develop an gppropriate
digtribution assumption.

1.4.2  Random regression imputation

As dated in section 1.3.2, predicted regression imputation suffers from shrinkage to the mean
phenomenon. Small random disturbances can be added to the predicted vaues as imputations
to increase variability. The smdl random disturbance may be drawn using the following methods:

(1) draw arandom disturbance from a distribution such asN(0,s”) with mean0 and
vaiance s obtained from observed data;

(2) draw arandom disturbance from respondents residuds of the regresson modd;

(3) draw arandom disturbance from residuds of those respondents which have
smilar vaues on some sdected auxiliary variables to protect against norlinearity and non
additivity in regresson models.

15



1.4.3 Ratiowith random disturbance imputation

We can add asmall random disturbance to the imputed values obtained from aratio imputation
model (see section 1.3.1) as was done above to the predicted regression imputation. The
random disturbance can be drawn using three methods pardld to those described above.

144  Modding non-ignorable missng mechanism

Most imputation methods modd the target variable with missng values but not the missng
indicator variable. These methods explicitly or implicitly assume that the missing values occur at
random given the conditional auxiliary variables. Greenless, Reece, and Zieschang (1982) try to
mode both the target variable and its missing indicator variable for a non-ignorable missing
mechanism which alows the missingness to depend on the target varidble itsdf.

Let Y be the target variable with missing vaues, X be the auxiliary varigblesfor predicting Y, R
be the response indicator, and Z be the auxiliary varidbles for predicting R X and Z may
overlgp. Then the imputation mode employed is.

Y =Xb+e & ~N(0s?)
P(R =1Y,Z) =1/[1+exp(-a - gY - dZ)].

The later equation indicates that the response probability of Y depends on Y itsdf. Then the
likelihood for i-th respondent is given by

— 1 xl gi_xib(..j
" Treqp(a- (- @) s & s &

and the likelihood for i-th nonrespondent is given by

B ‘+¥&i 1 Oxl & - Xb
L =08 l1+exp(-a - g¥-dZ)g s

P4
@O
()]
840
_<

The maximum likelihood etimatesfora, b, g, d , ands are obtained by maximizing the whole
Y
samplelikeihood L = O L, . The solution to this maximizing problem may be found through

i=1

the generdized Gauss-Newton dgorithm.

We may impute the missing vaues using the mean of the ditribution of 'Y conditiona on
nonresponse, the values of X and Z, and the parameter esimates &, b ,§,d, and d . Thismean
can be cdculaed in a graightforward way using numericd integration:
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ECY|X,Z,R =0)=
(V%2R =0=—0 . 5

1- =
Q‘é 1+exp(-a - gY- dzZ)g

Alternatively, to avoid the shrinkage to the mean phenomenon, we may use the following
imputation scheme.

(1) Draw e from N(0,1) and a uniform random number h from U[O, 1].
1

1+eXp('aA' gYAI - dAZ) )
3) If Pr(R = C)|\Z,Zi) >h ,impute Y for thei-th missing case; otherwise re-do
(2) and (2).

(2) Cdculae Y = X,b +se and P(R =0Y,,Z) =1-

If the modd of the missing indicator varigble is gpproximatdy satisfied, this method should give
better imputations than usua imputation methods. However, that is an unverifiable assumption in
redl gpplications and the extramode makesiit less robust for genera imputation purposes. This
method may not be recommended if there is no strong evidence to show that the missing
mechanism is confounded, that is, the missngness of Y dependson Y itsdf.

1.5 Imputation methodsrelated to Bayesian theories
151  Dataaugmentation

This Bayesan iterative method was proposed by Tanner and Wong (1987). It assumes two
digtributions. the distribution of the data and the prior digtribution of the parameters. Smilar to
the EM dgorithm, it conssts of two steps: (1) 1-step (imputation step) draws imputations for the
missing values from the predicted digtribution of the data, using current parameter estimates; (2)
P-gtep (parameter estimation step) draws parameter estimates from their posterior distribution,
using both the observed and imputed data. To start thisiterative process, we may use the EM
agorithm to obtain initid parameter esimates for the firgt |- step.

Schafer’ s software (Schafer 1997) implements this method using models for continuous data,
categorical data, and mixed continuous and categorica data.

For continuous data, this software assumes a multivariate normd distribution for the data,

and anormd prior for the mean parameters and a norma-inverted Wishart for the variance-
covariance parameters.
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For categorical data, this software assumes a multinomid distribution for the dataand a
Dirichlet prior distribution for the parameters. In cases where the number of parameters
becomes enormous, the software impaoses loglinear congraints (Bishop, Fienberg, and
Holland 1975) on the parameters.

For mixed continuous and categorical data, the software employs a generd location model
(Olkin & Tate 1961). It assumes multinomia distribution for the categories defined by the
categorica variables. Within each category, the continuous variables are assumed to have
multivariate normal distribution. The prior for the parametersin the multinomid digribution is
Direchlet and that for the parameters in the multivariate normad distribution is Jeffrey’ s non-
informative prior. To reduce the parameters, aloglinear constraint can be imposed on the
multinomiad parameters and alinear congraint on the mean parameters of the multivariate
normal digtribution.

The data augmentation procedure gpproximates the actua posterior distribution of the
parameter vector by a mixture of complete data posteriors. Their method of constructing the
complete data setsis closdly related to the Gibbs sampler (Geman and Geman 1984). This
method efficiently uses relaionships among variables for congructing imputations. It generdly
gives both good point estimates and variance estimates if the distribution assumptions on the
data are gpproximatdy satisfied. Under smple random sampling, the data augmentation method
provides “proper” multiple imputations in the sense of Rubin (1987). The disadvantage of the
data augmentation method is that it requires iterations and, smilar to the EM agorithm,
convergence can be dow.

152 Adjusted data augmentation

If the digtribution assumption in the data augmentation method isin question, it is desirable to let
the observed data Yos influence the shgpe of the didtribution of vaues imputed for Yy,is. Rubin
and Schenker (1986) adjusted the norma model implemented in Schafer’ s software as follows.
Firgt, the parameters m and s "* are obtained in the same way as in the data augmentation
method. Second, the components of m-dimensond vector X = (X,,..., X,,) aedrawnwith

replacement from the observed data Yo,s. Under repeated draws from Yo, the standardized
vaiable

Z =(X,- y) I (r-Ds? /v

has expected vaue 0 and variance 1. Findly, the m missing vaues Yy,is ae imputed using
m+s°Z,i=1,2,...,m.
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153  Sequentid imputation method

Kong, Liu and Wong (1994) propose a sequentia imputation procedure that involves imputing
the missing data sequentidly. According to the authors, in many gpplications the sequentia
imputation method can work well without the need for iterations.

To describe the method, let g be the parameter vector of interest and Y be the complete data.
Suppose the compl ete-data posterior distribution p(q | Y) issmple. Suppose the red data Y can
be decomposed into

glo aé o Yy )9

9 - 9 o
Y= cv-_c( M) =00,

SR

where Y and Yy (t=1, 2, ..., n) are the response and nonresponse variables in the t-th
observation. The missing variables may be different for different observations. The main god is
to find the posterior digtribution p(q | Y)):

Vp(Y, I ay, = €, [palv)].

p(aly,) =

If we can draw M independent copies of Y,'s from the conditiona distribution p(Yn, | Y;), then
we can approximate the posterior distribution p(q | Y:) by ﬁ &°1 j“il p(alY(j)), where

Y(j) =(Y.,Y,(j)) and Yy() isthe-th imputations for the missing part Y,,. However, drawing
imputations directly from conditiond distribution p(Yn, | Y;) isusudly difficult. The Gibbs sampler
or the data augmentation procedure do this approximately by iterations.

The sequentia imputation method achieves something smilar by imputing the Y’ s sequentialy
and using importance sampling weights to avoid iterations. The sequentid imputation starts by
drawing Y, from p(Ym | Yi) and computing wy=p(Y;1). Then for t=2, ..., n, the following two
steps are done sequentidly,

(1) Draw Y/, from the conditional distribution p(Y,, |le,Yr;l, Yo YY)
(2) Compute the predictive probabilities P(Y,[Y,1, Yo, ., Y, 1.1, Yie.,) and

W =W XP(Y Y, Yoo Y1 Y1) - (1.1)
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Let w= w,, S0 that

Both steps are required to be computationaly smple, which is often the case if the predictive
digributions p(Y1) and p(Y |Y;,....Y, ;) aedmple Thisisthe key to the feashility of sequentia
imputation.

We can independently repesat the above process M times to draw M sets of imputations and
weights, denoted as Y, (j) and w(j) respectively (j=1, 2, ..., M). Then the posterior
digribution p(q | Y,) isestimated by

Y.V (D), (12)

which is easy to compute under the assumption that the complete-data posterior issmple,
where W = & W(j).

1y
— W
W, ()Pl

To undergtand why (1.2) is the appropriate approximeation, we note that each independent
imputation Y, () isnot drawn from the actua conditional distribution p(Yy| Y;), but from the

“trid dengty”
* * * n * * *
p (leYr) = p(leerl)O p(Ym |le1Ym1’""Yr,t-l1Ym,t-1’Yrt)
t=2

Using sandard results from importance sampling, we should use weights

PG (DY) _ PO Y) . P0G A& PV Y Yo (i) Yo ()

VOETE N T ) P S e () ()
PG p(Y,,) & Y Y YD) Yoea (D)
PO Yo Yo Yo (D Yo (D) 22 (Yoo Y1 Yo (0D Yia ()
_p(Yy) A R 0)
=) O p(Yo YooY Vi (s Yoa () AL

which is proportiona to w(j) since p(Y;) isthe samefor dl M imputations. Thisimpliesw(j)
(=1, ..., M) are correct weights and (1.2) is an gppropriate approximeation.

In sequential imputation, it is generaly desirable to have the tria distribution p (Y| Y;) as close
to the true digtribution p(Yn| ;) as possible. This usualy means that the complete cases should
be processed firgt, and the other cases should be processed in order of increasing missngness



S0 that missing vaues are imputed conditioned on as many of Y; as possible. One advantage of
sequentia imputation is that this method can impute data sequentiadly even when the data are
collected a different times, for example, in medicd sudies.

In Situations where we want to compare models, it will be important to get the likelihood of
different models. For a particular modd H the likelihood of H given incomplete data Y, is

P (Y) = 0Py (Y 1a)p, (@)da.
Suppose that we have applied sequentia imputation based on mode H. Then for dl j we have
1=E_ [w (] =E;w(i)/pY)],
which implies Epk [(W(j)] = p(Y,). Therefore,

M

o 14
b(%) =+ elw(J)

isan unbiased estimate of the likdihood p(Y;) for the imputation mode.

In summary, sequentia imputation has three advantages over the data augmentation: (1) it does
not require iterations; (2) it can directly estimate the mode likelihood; (3) it can cheaply perform
sengtivity anadlyss and influence analysis. However, it requires that p(Y.), p(Y1Y;,....Y,.;),and
p(q|Y) aedl ample. Otherwise, it may be not feasble to implement the sequentid imputation
method. Thisisavery redtrictive condition.

1.6 Imputation practice across NCES surveys

The following surveys conducted by the National Center for Education Statistics over the years
used some method to impute for item nonresponse:

Universe Surveys

(1) Common Core of Data (CCD, conducted annudly)
(2) Private School Universe Survey (PSS, conducted biennidly)
(3) Integrated Postsecondary Education Data System (IPEDYS):
Indtitutional Characteristics (IPEDS-1C, conducted annually)
Fdl Enroliment (IPEDS-EF, conducted annudly)
Completions (IPEDS-C, conducted annually)
Financid Statistics (IPEDS-F, conducted annudly)
Sdaries, Tenure and Fringe Benefits of Full-Time Ingructiond Faculty (IPEDS-SA,
conducted annudly)
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Fal Saff (IPEDS-S, conducted biennidly)
Academic Libraries (IPEDS-L, conducted biennidly)

Sample Surveys

D
)

3
(4)

()
(6)

(7)
(8)

Schools and Staffing Survey (SASS, conducted in 198788, 199091, 1993-94)

SASS Teacher Follow-up Survey (SASS-TFS, conducted in 1988-89, 199192, 1994~
95)

National Household Education Survey (NHES, conducted in 1991, 1993, 1995, 1996)
Recent College Graduates Survey (RCG, conducted in 1976, 1978, 1981, 1985, 1987,
1991)

Nationa Study of Postsecondary Faculty (NSOPF, conducted in 1988 and 1993)
National Assessment of Education Progress (NAEP, conducted biennidly since 1980 and
annualy from 1969 to 1980)

Third Internationa Mathematics and Science Study (TIMSS, conducted in 1995)
Nationa Postsecondary Student Aid Study (NPSAS, conducted at 3-year intervals since
1986-87)

Fast Response Surveys

@
)

Fast Response Survey System (FRSS, “ College-Level Remedid Education in the Fall of
1989,” conducted in 1990)

Postsecondary Education Quick Information System (PEQIS; “Deaf and Hard of Hearing
Students in Postsecondary Education,” conducted in 1993)

Imputation methods used across these surveys are presented in table 1.6.1.



Table 1.6.1—Imputation methods used across NCES surveys

Survey Imputation M ethods Used

CCD Ratio imputation and adjustment

PSS Sequentia hot deck, ratio adjustment, deductive imputation
IPEDS-IC Ratio imputation, mean imputation

|PEDS-EF Ratio imputation, mean imputation, raking method

IPEDS-C Cold deck imputation, ratio imputation, raking method, mean imputation
IPEDS-SA Within-class ratio imputation, within-class mean imputation
IPEDS-F Ratio adjusted cold deck imputation, sequential hot deck imputation
IPEDS-S Ratio adjustment cold deck imputation, hot deck imputation
IPEDS-L Logica imputation, ratio adjustment

IPEDS-ALS Cold deck imputation, ratio imputation

NSOPF PROC IMPUTE, sequentia hot deck

SASS Sequentia hot deck, deductive imputation

SASS-TFS Sequentia hot deck, deductive imputation

RCG Hot deck, within-class random imputation, deductive imputation
NHES Hot deck, manua imputation

NPSAS Hot deck, regression imputation, deductive

NAEP Multiple imputation based on Bayesian modds’

TIMSS Multiple imputation based on Bayesian models’

FRSS Sequentia hot deck imputation, mean imputation, and median imputation
PEQIS Sequentia hot deck imputation, ratio adjustment

* Multiple imputation techniques were applied to create plausible values for performance scores based on
Item Response Theory.



Chapter 2 Imputation Software Products
2.1 PROC IMPUTE (See 1.2.6 Within-class random imputation)

PROC IMPUTE is an advanced imputation software created by American Ingtitutes for
Research (AIR) under a contract with NCES. It is a stland-aone FORTRAN program and only
workswith ASCII datafiles. The software isin the public domain and users can obtain a copy
through NCES.

PROC IMPUTE is aregressionbased digtributional estimation procedure thet is believed to be
more general and to produce more accurate results than a standard hot deck procedure (AIR,
1980). It consders each variable on thefilein turn asa“target” variable whose missing vaues
areto befilled in, and it uses information on other variables to minimize the error in imputing
each target variable. PROC IMPUTE uses three steps that are smilar to those used in hot deck
procedure to impute each target variable:

(1) It uses sepwise regresson anaysis to find the best combination of predictors
for eech target variable;

(2) It creastes homogeneous cells (imputation classes) of records which have close
predicted regression values,

(3) It imputes each missng record in a given cdl with aweighted average of two
donors which are drawn from its own cell and its adjacent cell, respectively,
with probability proportiond to the observed frequencies within the two cells.
The weighted average vaue is rounded to an integer if the integer flag is set for
the target variable.

The software dso automatically crestes missing data flags for each variable with avaue of “1”
for imputed vaues, “R” for reported values, and “A” for skip missing vaues.

Since PROC IMPUTE involves ordinary multivariate regresson anayss, it only works for
continuous and dichotomous variables. Polytomous variables need to be recoded into
dichotomous variables before running PROC IMPUTE.

PROC IMPUTE can incorporate about 30 variables in one imputation model. A large data set
needs to be divided into severa subsets and each subset isimputed via a separate imputation
model. Some key variables may be included in dl imputation models. Note that PROC
IMPUTE does not need to be run multiple times to impute alarge data set because of the batch
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run feature of PROC IMPUTE: one batch run can handle al the data no matter how large the
datasetis.

PROC IMPUTE has two other important features. Firdt, it can create as many as nine sets of
imputations. Although it is not “proper” according to Rubin’s multiple imputation theory (Rubin
1987), results of our smulation study (described in chapter 5) show that, in many Stuations,
PROC IMPUTE provides better multiple imputation variance estimates than some “proper”
methods. Second, it can perform within-class imputations through a“BY” statement which is
pardld toaSAS“BY” datement. Thisfeature is useful for dretified data where the user may
want to perform imputations within each stratum. It is aso convenient for Monte Carlo
smulations where multiple data sets need to be generated o that the average performance over
replications can be assessed. Using a“BY” dtatement with a data st identification variable, dl
data sets can be imputed through one run of PROC IMPUTE.

2.2 Schafer’simputation software (See 1.5.1 Data augmentation under Imputation methods
related to Bayesian theories)

Dr. Joseph Schafer of Pennsylvania State University developed this public domain software.
The origind verson was written using S-PLUS functions and FORTRAN subroutines and ran
under an S-PLUS environment. The current menu-driven verson for Windows was written in
FORTAN 90. It only works with ASCII datafilesin which anumeric valueis used to represent
amissing vaue. It will not work if a“.” isused asamissng vdue in the ASCII files

Schafer’ simputation software (Schafer 1997) applies the data augmentation method. Like the
EM dgorithm, it conssts of two steps: (1) the I-step (imputation step) draws imputations for the
missing vaues from the predicted distribution of the data given current parameter estimates, (2)
the P-step (parameter estimation step) draws parameter estimates from their posterior
digributions given both the observed and imputed data. To start thisiterative process, the EM
agorithm or ECM agorithm (Meng and Rubin 1991) may be used to obtain initid parameter
esimates for the first |-step.

The software conssts of three modules using different statistical models for continuous data, for
categorical data, and for mixed continuous and categorica data.

(1) For continuous data, the software assumes a multivariate norma digtribution for the
data, and anormal prior for the mean parameters and a normal-inverted Wishart for
the variance- covariance parameters. Under these assumptions, the posterior
digtributions of the mean parameter and the variance- covariance parameters are
multivariate norma and normd- inverted Wishart, respectively. Therefore, P-steps
draw parameter estimates from these posterior distributions and |- steps draw
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imputations for missing vaues from their predictive normd distribution with updated
parameter estimates obtained in the P-steps.

(2) For categorica data, the software assumes a multinomid digtribution for the data and
aDirichlet prior digribution for the parameters. Under this saturated multinomia
model, the pogterior digtribution of the parameters—the cdll probabilities—isdso a
Dirichlet digtribution. However, asthe number of categorica variables increase, the
number of cells formed by the variables quickly becomes enormous. In these cases,
the software imposes loglinear congtraints (Bishop, Fienberg and Holland 1975) to
reduce the number of parameters for estimation. For these constrained loglinear
models, a Bayesan Iterative Proportion Fitting dgorithm (Gelman, Rubin, Carlin and
Stern 1995) is used to simulate the posterior distributions for the parameters.

(3) For mixed continuous and categorica data, the software employs agenerd location
model (Olkin and Tate 1961). It assumes multinomid digtribution for the categories
defined by the categoricd variables. Within each category, the continuous variables
are assumed to have multivariate normad distribution. The prior for the parametersin
the multinomid digtribution is a Direchlet distribution and that for the parametersin the
multivariate norma distribution is Jeffrey’ s non-informetive prior. In cases where the
number of parameters becomes enormous, aloglinear constraint can be imposed on
the multinomia parameters and alinear congtraint on the mean parameters of the
multivariate normd digtribution.

2.3 IRMA

Imputation Run Manager (IRMA) is a public domain software developed by Synectics for
Management Decisions, Inc., under a contract with NCES. User permission can be obtained
through NCES.

IRMA is designed to supply avariety of imputation techniques to the users. The current verson
of IRMA was built using Microsoft Visua Basc and includes two imputation techniques: 1)
PROC IMPUTE and 2) Schafer’s Imputation Software. IRMA preserves dl the nice features
of PROC IMPUTE and Schafer’ s Imputation Software and provides some enhanced features.
For ingtance, while PROC IMPUTE and Schafer’ s Imputation Software only work with ASCI|
files, IRMA workswith SAS, SPSS, and ASCII datafiles. Another enhancement alowsthe
unimputed input data file and the imputed output data file to be of different types. For example,
the input file can be a SASfile, but the user can require IRMA to output the imputed file in
SPSS format, or in both SPSS and SAS formats. More imputation methods will be added to a
future verson of IRMA.
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2.4 GEISand GES

Generdized Edit and Imputation System (GEIS) and Generdized Estimation System (GES)
were developed by Statistics Canada. GEI'S performs data editing and imputation functions
while GES congtructs point estimates and variance estimates using a number of different
estimation modules. The software is a SAS-based application which runsunder aSAS
environment. Datamust be either in SAS format or in ASCII format with fixed fidld pogitions. A
site license for GEIS and GES costs $20,000 (CDN), and there is a $2,000 yearly maintenance
fee.

The imputation methods used in this software are nearest neighbor hot deck, current ratio,
current mean, previous vaue, previous mean, and auxiliary trend, which are the key methods
used by Statigtics Canada for imputation of survey missng data. All of these are sngle and
deterministic imputation methods and therefore suffer the disadvantage of deflating the variance
estimates.

2.5 SOLAS for Missing Data Analysis 1.0

This commercid product was developed by Statigtica Solutions Limited. A single user license
costs $995 for commercia purposes and $795 for academic purposes.

Imputation methods used in this software include: (1) Group Mean Imputation, which replaces
missing vaues with the cell means of the sample; (2) Last Vdue Carried Forward (Sequentid
Hot Deck), in which the last observed vaue isused to fill in missng vaues a alaer point in the
study; and (3) Nearest Neighbor Hot Deck Imputation, in which missing values are replaced
with values taken from the closest matching respondents. Multiple imputations can dso be
created by this software. These imputation methods are not very attractive for the purpose of
datidicd inference. Any satistician with some programming skill can easly implement these
imputation algorithms. However, SOLAS can do more than imputation. It can dso perform
many standard statistical anayses based on imputed data, including descriptive analys's, cross-
tabulation, gatigtica tests (t and non-parametric), ANOVA, regresson, BMDP surviva
andyss.
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Chapter 3 Nonresponse Bias

Nonresponse bias is the bias of asurvey estimate due to the difference between respondents
and nonrespondents. It is one of the most important issues concerning survey data andyds. It is
desirable to eiminate nonresponse bias through imputation and/or estimation methods. One way
isto congtruct a so-cdled restoring estimator, defined by Rancourt, Lee, and Sirndal (1994)
as.

Given the sample S if the conditiona expectation of the difference between an imputation
esimator y* and the complete data estimator v equalsto 0, i.e., E(Y" - ys|9) = 0,

where the expectation is over the response mechanism and the imputation model, then §°
iscdled arestoring estimator.

Thisactudly is equivaent to the “first order proper” estimator defined by Rubin (1996).

If missing values occur completdy at random (MCAR)—that is, the survey has uniform
response—, then the respondents represent the population well and survey nonresponse causes
no bias. However, thisided missng mechanism rarely existsin red applications.

The most commonly assumed missing mechenism ismissing at random (MAR), which may
more agppropriately be caled missing conditionally at random. MAR requires that
respondents and nonrespondents have no systematic differences given some observed auxiliary
variables (cdled conditioning variables in imputation literature). One ample example of MAR
isthat respondents and nonrespondents within each imputation class formed by some predictive
auxiliary variables both represent random samples from the subpopulation. In this case,
estimates within each imputation class will have no nonresponse biases, and thus the combined
overd| esimates will have no nonresponse bias. Therefore, with amissing mechanism MAR,
nonresponse bias can be corrected through imputation by conditioning on the auxiliary variables
that are rdated to the missng mechanism of the target varidble. In red gpplications, we usudly
do not know which auxiliary varigbles are responsible for the missing vaues of the target
variadle. Thus many imputation pioneers such as Rubin and Little advocate using as many
auxiliary variables as possble to make the missng mechanism as close to MAR as possible.

Different imputation methods use conditioning variables in different ways. Some ways are more
effective than others depending upon the circumstances. Hot deck method uses conditioning
variables as classfication or matching variables; regression-type imputation uses conditioning
variables as predictors through a regression modd ; and the data augmentation method uses the
association between the target variable and auxiliary variables through a Bayesan modd. These
are the three most popular ways to use conditioning variables. Generaly, hot deck method isthe
amplest and mogt intuitive way; therefore it has been used the most often in past surveys.
However, it may be the leest effective way of usng auxiliary variaoles. Due to the efforts of
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Rubin and many of hisfollowers, the data augmentation method is becoming more and more
popular.

The most serious nonresponse bias stuation iswith confounded missng mechanisms, thet is, the
probability that a datum is missng depends on the target variable itsdf. More formaly,
confounded and unconfounded missing mechanisms may be defined as.

Let R be the set of the respondents and S be the whole sample. A response mechanism q(x
| S is said to be unconfounded if it isof theform q(R| S) = q(R| Xs ); that is, it depends
on the auxiliary variables only, and the response probabilities satisfy P(ki R| S) for dl units
ki S If it depends on y-vaues aswell, then it is called confounded.

An unconfounded missing mechaniam will become MAR if dl auxiliary varidblesrdaed to
response probabilities are used as conditioning variables. A confounded missing mechanism can
never become MAR.

With a confounded missing mechaniam, it is generdly impossible to completely diminate
nonresponse biases unless the confounded missing mechanism is known. Unfortunately, the
missing mechaniam is never known in redl goplications.

Rancourt, Lee, and Sirnda (1994) discussed severd estimators designed to correct
nonresponse biases for dataimputed via a ratio imputation method. These estimates along with
the ratio estimator and the observed- data- based estimator are compared viaa smulation study
interms of bias, MSE (mean square error) and coverage rate for avariety of missing
mechanisms. Ther results are summarized as follows.

Suppose that the data have been imputed viarthe ratio imputation method. The target varigble is
y and the fully observed auxiliary variable x is used to impute y. The whole sample S consists of
n unitswith r respondents and m = n-r nonrespondents. The estimate of the population mean
based on the observed values only is

Yo = ey, +a y 2= x
™ ngs " =g X s

where y; represents the imputed value for the j-th missing case, and x; isthe mean of x over
the whole sample S



Under the ided missing mechanism MCAR, . isunbiased and v, is gpproximately unbiased.
Under unconfounded missing mechanisms where missing probabilitiesonly dependon x , § is
generaly biased but v, is unbiased. If the missing mechanism is confounded, both y. and
V.mp aregeneraly biased. Rancourt, Lee, and Sirnddl suggest using

X

oo = 7, &+ (1- SC 2
ycrimp - yrgl' n )_(r H

to correct the biases for the ratio imputation estimator when the response mechanism is
confounded. When C=1, y,_, = becomesthe ratio imputation estimator y,, . With correction

factor c = @/& it becomes unbiased, but it is obvioudy unestimable since y_ is not known.
Xm Xr

The eight correction factors C were considered by Rancourt, Lee, and Sirndal (1994):

X W A
C]_:__m7C2:;i’C3:Tm’C4:__m'
X X W, A

and
Ki=1- (C* - (R - 1,i=1,2,3,4

where wy corresponding to the rank of xy. The; takesinto account the correlation between x
and y. The correction factors C;, Cs, K3, and K3 are based on the observed data only, while the
correction factors C,, C,4, K,, and K, are based on the whole sample S. Therefore, for the
convenience of description, v, with Cy, Cs, Ky, or Ks was caled the r-corrected estimate,

while v, With C;, Cy, K3, and K4 was cdlled the S-corrected estimate.

In their smulation study, Rancourt, Lee, and S@rndd chose
y, =a+bx, +cx’ +e, E(g)=0, V(e)=d?x,

as Smulation populations. Different types of populations are formed by setting the congtants a,
b, and c to different vaues

(1) RATIC: a=0, c=0;

(2) CONCAVE: a=0, c<0 (c=-0.01 in the amul&tion);
(3) CONVEX: a=0, c>0 (c=0.01 in the Smulation);

(4) NONRATIO: at 0, b>0, c=0.

Three correlation levels r, = 0.7, 0.8, and 0.9 were obtained by a suitable value of d.

Therefore, atota of 12 populations were considered: three RATIO, three CONCAVE, three
CONVEX, and three NONRATIO with correlation levels 0.7, 0.8, and 0.9, respectively.



Fve missng mechaniams were usad in the smulation sudy:

(M1)  Uniform response (MCAR);

(M2)  The nonresponse probability is adecreasing function of x specified as
exp(- gx, ) - Thisis an unconfounded mechanism.

(M3)  The nonresponse probability is an increasing function of x, specified as
1- exp(- gx,) - Thisis aso an unconfounded mechanism.

(M4)  The nonresponse probakility is adecreasing function of yi pecified as
exp(- gy, ) - Thisisaconfounded mechanism.

(M5)  The nonresponse probability is an increasing function of yy specified as
1- exp(- gy, ) - Thisisaso aconfounded mechanism.

The smaller units will be underrepresented in the response set Rfor (M2) and (M4), while the
larger units will be underrepresented in the response set Rfor (M3) and (M5). The congtant g is
determined such that the average nonresponse rate is equa to one of the values 10 percent, 20
percent, 30 percent, and 40 percent.

The ten estimates were compared in terms of bias, mean square error, and coverage rate of the
95 percent confidence intervas. The primary findings are:

(1) Ther-corrected estimators (using C,, Cs, K1, K3) performed very poorly since the
correction only used the observed datafor x;

(2) For uniform response mechanism (M1), both uncorrected etimators y, and y,,,, have

better performance than the corrected estimators. But the lossis not very severe by
mistakenly using the correction when it is not necessary for uniform nonresponse;

(3) For unconfounded missing mechanisms (M2) and (M3), the ratio imputation estimator
Y.p hasthe best performances for RATIO, CONCAVE and NONRATIO

populations, while the S-corrected estimators have the best performances for the
CONVEX population;

(4) For confounded mechanisms (M4) and (M5), v, is better than the S-corrected

estimators for CONCAVE and NONRATIO populations, but the S-corrected
estimators are better than y,, . for RATIO and CONVEX populations;

(5) The observed-data based estimator . performs poorly for al nonuniform response

mechanisms. All estimators perform poorly for CONVEX populations with the (M5)
reponse mechanism.
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All in dl, the correction to the ratio imputation estimator is not a great success in this studly.
Correction with observed data of x (r-corrected estimators) should never be recommended.
We will generdly benefit from the S-corrected estimators with CONVEX populations.
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Chapter 4 Variance Estimation and Multiple | mputation

One of the most common criticisms on the use of imputation for missing dataisthet it leadsto
underestimated variances. Generdly, deterministic Single imputation more serioudy
underestimates variances than random single imputation does. Rubin (1987) seesit asa
disadvantage of single imputation that “ ... the one imputed vaue cannot in itself represent
uncertainty about which vaue to impute: If one value were redly adequate, then that vaue was
never missing. Hence, andyses that treat imputed values just like observed vaues generdly
systematicaly underestimate uncertainty, even assuming the precise reasons for nonresponse are
known.” In Rubin’s opinion, multiple imputation is needed to obtain “ proper” variance
estimates.

However, Rao (1996) cites some disadvantages of multiple imputations:

ggnificantly higher costs of storage and processing of multiple data sets;

genera ABB methods for generating proper imputations that accommodate issues of
clustering, dratification, and weighting to compensate for unequa probabilities of seection
are not currently available;

asamd| number of imputations, m, may result in alow level of precison for the multiple
imputation variance estimator since the between imputation variance based on m-1 degrees
of freedom may be poorly estimated.

This chapter summarizes and discusses three types of variance estimation methods for imputed
survey data. Section 4.1 discusses the method proposed by Sirnda (1992) which atempts to
add imputation variances to the overd| variance estimates without performing multiple
imputation. Section 4.2 describes the gpplication of jackknife variance estimation methods for
imputed data (Ra01996; Fay 1996). Inference based on multiply imputed datais discussed in
section 4.3.

4.1 Add imputation variance without multiple imputation

Srnda (1992) tries to correct underestimated variances by adding the component of
imputation variance to the sample variance for dataimputed via a Sngle imputation procedure.

Suppose U isthe population (N units), Sisthe sample (n units), and Ris the respondents (r

units). Denote the true value of the tota by t, the estimate based on the complete databy £ , and
the estimate based the imputed databy { (obtained viathe sameformulaas ). Our interest is

thevarianceof { since { isthe actud estimate used in the inference.

Thetotd error of { can be decomposed as

f -t=(f - f)+(f- t)=imputation error + sampling error.



We define the imputation residud as e, =y, - y,, Which can not be observed for aunit

kT S- R.Thentheimputation error becomes £ - f=- § w,e, -
kis- R

The modd-assisted gpproach considers three different distributions, one is *with respect to the
imputation modd” (indicated by x), the second one is“ with respect to the sampling design”
(indicated by S), the third one is “with respect to the response mechanism, given S’ (indicated
by R). The estimator { isoveral unbiased in the sensethet E,EqER(f - t) = 0 if two

conditions hold:

(8) order of the expectations can be changed: E, EEx (3 = EsERE,[}S,RI;
(b) imputation resduds have zero modd expectetion: E, (e, ) = 0.

Condition (a) is satisfied if the response mechanism is one that may depend on Sand on
auxiliary data, but not on the y-values.

The overdl variance of an unbiased estimator { is
Vior = ExESERI( - ) +(f. - ©)]° = EV, + ESERVy © Vaam +Vinp

where v, = E5(f - t)? isthedesign-based variance of {, and v, = E,[(f. - {)*|S,R] isthe
conditiona model-based imputation variance. In the above equation, we ignore the cross-
product term. The argument for obtaining the sample variance V, and the imputation variance

V. isasfollows

() Vg,:LetV, bethe standard estimator of the design variance for acomplete
dataset, and V., isthe quantity obtained via the same formulafor v, using the
imputed data. Evaluate the conditiona expectation E, (V, - V. ,|S,R) =V, , andfinda
model unbiased estimator V;; for Vs, which will usually reguire the estimation of

certain parameters of the modd x.
(i) Vi - Find amodel unbiased estimator Vi, for V, , which may again require the

estimation of unknown parameters of themode x. Then V, isoverdl unbiased for the
imputetion variance Vimp.

Notethat therole of Vi, isto correct for the fact thet the data after imputation may display

“less than naturd” variation. This often happens when the imputed values equa the predicted
vaue from afitted regression, that is, “the value on the ling’. The variation around the line is not
reflected in the predicted vaue. As shown for the ratio imputation method, if resduas and



predicted values are used asimputed vaues, V;; isno longer needed to be added to the
sample variance estimator.

Hereisasmple example. Suppose the sample Sis drawn with SRSWOR and the response
mean ., isimputed for al missing vaues. The corresponding imputation model x states that

y, =b +e,, wherethee, are uncorrelated error termswith E, (e,) =0, V, (e,) =s . Then

A

{ =Nyg,
\7p = N?@1/n- 1/ N)és(yk - ¥5)?/(n- ) ° N?@/n- 1/ N)Sis

r‘l 2
n- 1R

-3

11
n N

A 1 1. o
Vip = N2 D8 (- 50?1 (0- D ° N

Since E, Sl = E, Sk Ex(V, - V.,IS,R) = N*(1/n- 1/ N)(n- r)/(n- DE, Sik-
Therefore, Vi, = N?(1/n- 1/ N)(n- m) /(n- 1)Si isamodel unbiased estimétor for Vs,
which gives

VAsam :\f.p +VAdif = N2(1/ n- l/ N)S>2,R y
Since
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Y (n-r) [ExyS—R+ExyR_ Ex[YS—RYR]]—(é‘nQ’ (n-r) [n_ ;
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wehave V., = N?(1/r - 1/n)Sk. Therefore, Vi, =V +Vigp = N?(@/1 - 1/ N)Sie.

The following table shows the contribution of each variance component to the tota variance for
SRSWOR using the mean imputation method for three different missingness rates. Note when
the missing rate is 30 percent, the variance based on the imputed vaue only accounts for 49
percent of the total variance, while the variance due to imputation accounts for another 30
percent. Thus 21 percent of the total variance needs to be added to the sampling variance.



Table 4.1.1—Contribution of each variance component to thetotal variance for the
SRSWOR sampling with the mean imputation method

Missing rate in percentage Contribution (in percentage) to V,,
100(1-r/n) V., Vit Vimp
10 81 9 10
20 64 16 20
30 49 21 30

The anaytica formulas for SRSWOR sampling with the ratio imputation method has also been
derived in Sirndal (1992).

As acomment on this approach, it is very convenient that imputation variance can be estimated
without performing multiple imputation and , therefore, there is no need for a grest ded of
storage space and processing time which multiple imputation requires. The variance estimates
obtained through this method may be more accurate than those obtained through a smal number
of multiple imputations since a small number of multiple imputations may lead to poor between
imputation variance estimation. However, Sirnda (1992) only derived andyticd formulasfor
two smple cases: SRSWOR sampling with the mean and ratio imputation. For a more complex
survey design and/or more complicated imputation agorithms, the derivation is not trivia and
may be impossible. It will be even more difficult to gpply the method to nonlinear datigtics such
as median, quartile, ratio, etc. Furthermore, this method only takes care of variance estimates. It
seems arduous to adjust for covariance viathis method.

To make this method more attractive, random imputation methods should be used instead of
deterministic imputation methods, because deterministic imputation methods not only distort the
digtribution of data, but also require extra effort to estimate Vs

4.2 Jackknife variance estimation with imputed data

Rao (1996) and Fay (1996) extended the jackknife variance estimation method to imputed
survey data. Rao (1996) discussed the jackknife method for imputed survey data for two
gtuations (1) dratified random sampling with ratio imputation and regression imputation; (2)
dratified multistage sampling with cell mean imputation and weighted hot deck imputation. Fay
(1996) applied the jackknife method to imputed data via fractionaly weighted imputation.

4.2.1  Jackknife variance estimation with imputed data for dratified random sampling
Rao (1996) expanded the jackknife variance estimation method to imputed survey data

collected with a sratified random sampling design. Let n, be the sample sze and N, be the
population size for the h-th sratum (h=1, 2, ...L). In case of complete data, a design-unbiased



L
(p-unbiased) estimator of population meanisgivenby y = év\/hyh ,Wherew, = N, /& N, is
h=1

theweight for stratum h and y,, isthe h-th stratum sample mean. The jackknife variance
edimator isgiven by

. ¢&n -1ae n, 0g _
v,(V)=a +—— g N 23 (Y- 9%
h=1 h h @j=1

where y"t 1 isthe jackknife sample mean obtained by deleting the j-th observation from the h-
th stratum.

In presence of nonresponses, let Ay and Aqn be the sample of respondents and nonrespondents
in that stratum. The jackknife sample mean y"¢ # can be adjusted in the following way: (1)
under determinigtic imputaion if arespondent isleft out, dl the imputed vaues should be
adjusted by theamount y, ¢V - vy, where y 'V isthe vaue that one would impute for thei-th
nonrespondent if the j-th respondent is deleted in the h-th stratum; (2) under stochastic
imputation, if arespondent is excluded, each of the imputed vauesin stratum h should be
adjusted by an average amount E¢ )y, - E.y, , where E- denotes expectation with respect to
the imputation procedure given the donor set and EL ? isthe expectation with respect to the
imputation procedure when the donor set is modified by excluding unit j. Then the jackknife
variance esimator with imputed data is given by

v, (V) =

—h( Da _

h IZIJ-l

v

where y, =4 =W, (a Yy + é_Amy;i )/ n, isthe overal sample mean with imputed data.

The following two examples apply this technique to ratio imputation and regresson imputation.

Example 1 (ratio imputation). Suppose that an auxiliary variable x closdly rlated to anitem y is

observed on al sample units. Ratio imputation uses y’ = th x, asimputed vauesfor thei-th
X

rh
nonrespondent in the h-th stratum. Under this determinigtic imputation procedure, if j-th
respondent is excluded in the jackknife variance estimation, the imputed vaue will be

Yo P _(Yr J)/X )Xhi'

A stochastic counterpart of ratio imputation adds the donors resduas to the aboveratio
imputed values. Under this imputation approach, E.y;, = (Vm /Ym)xhi and

ES j)y*l = (%2 /%5)x, - Thusthe adjusted imputed values are given by
(thl)/x( ]))Xhi - (Vrh /)_(rh)xhi'
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Example 2 (regresson imputation). Again assume that x is observed on dl sample units. Linear
regresson imputetionuses y,, = y.,, + tfm(xhi - xh), where b, isthe ordinary least square
regression coefficient based on the respondents in stratum h. Under this determinigtic imputation
procedure, when the j-th respondent is ddeted in the jackknife variance estimation, the imputed
vaueswill be y, ¢ = g6 +p¢ j’(xhi - X j)) , Where b ¢V isthe least squares regression
coefficient when the j-th respondent is del eted.

A stochadtic counterpart of regression imputation adds a donor’ s residud to the above
imputations, where the donor is selected through a smple random sampling. Under this
approach, we have ECVy, =9, and E Vy, =959 =y$ D +b( P (x, - X¢?) . Thusthe
adjusted imputed values are given by y,, +y( 7 -y if thej-th respondent is deleted and
reman unchanged if thej-th non-respondent is deleted.

In these two examples, the imputed estimators of mean are gpproximately design-unbiased
under uniform response within each stratum, as well as design modd unbiased under their
super-population modds (defined in sections 1.3.1 and 1.3.2). The jackknife variance
estimators are p-consstent, as well as gpproximately design modd unbiased under their super-
population models.

Rao (1996) aso discussed jackknife variance estimation for stratified multistage sampling design
with missing dataimputed by the class mean imputation method and the weighted within-class
hot deck method. We omit them here because they are pardld to the two examples given
above. Linearized versons of the jackknife variance estimators, which are useful with computer
programs that use the linearization method of variance estimation (eg., SUDAAN), are ds0
provided in that paper.

However, as Judkins (1996) pointed out, this jackknife method is essentidly a univariate tool
with well behaved extensons only for variables that are either never missing or are missing or
present in whole blocks. It has only been gpplied to smple dtatistics such astotal, mean or
functions of tota or mean under margind imputation. For more complex satistics, such as
regression and correlation coefficients, margind imputation often attenuates the association
between varigbles. Joint imputation from the same donor, called common donor hot deck, may
be used sometimes to dleviate this problem with margind imputation when a record has severa
missing related vaues. This method preserves bivariate relationships only when both varigbles
are missing; that is, when there are no partia nonrespondents with respect to the two variables.

4.2.2  Jackknife variance estimation with fractiondly weighted imputation
Fay (1996) discussed the gpplication of the jackknife variance estimation method to survey data

imputed through the fractionally weighted imputation (FWI) method. FWI creates one set of
imputations by fractiondly weighting m sets of imputations. In generd, FWI assgns aweight



1/m to each of the m imputations. If the origina andyssis weighted, then the m imputed vaues
each receive 1/m times the origind weight.

Let A, and A, be the sample of respondents and nonrespondents, respectively, n be the total
sample size, and r be the number of respondents. For any dataimputed viaa single imputation
method, the mean may be estimated by

7:8‘197 +§1- Luy
engr nH nr

where y and y,, arethe mean of the reported values of the respondents and the mean of

imputed values for the nonrespondents respectively. The standard jackknife variance estimator
is

v, =L1§ (yer- y)

where
cep 1 Y-DIy-y ] i T A
- Diy- v it i1 A,

This naive jackknife variance estimate treats the imputed values as true observed vaues. Rao
and Shao (1992) modified this jackknife mean by

i1 P —eh - . A
y(-])a_}.n 1[ryr' yj"'é. (y +yV-y1 it jT A
_.. ) il Ay '
1

/(- Diny- yi] it T A,

where g = (ry, - y,) /(r - 1) isthemean of the (r-1) respondents without jth observation.
This formula reflects that, when a respondent is deleted, each imputed value y” need to be
adjusted by theamount of (y“? - y ) sincewe only have r-1 respondents for imputation when

jth respondent isleft out. For example, for the mean imputation method, the origindly imputed
valuesy' =y fordl il Ay, and then the adjusted imputed velueis ¢ when jth respondent is
left out.

For fractionaly weighted imputations, the mean may be estimated by

. 1e_ o g1 .0
y(FWI) _qur + a. aay“l’,\h
e iTAy 151 u

where y; islthimputetion for jth missing vaue. The Rao-Shao type jackknife variance
estimate may be congtructed by replacing y*© P? with
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Fay (1996) clamed that “unlike MI (multiple imputation), the RS (Rao- Shao type) variance
esimator does not use variation among the m different imputed sets.... . Because the effect of
missing data isincorporated in the variance caculation as awhole, instead of isolated. ..for MI,
it is generaly unnecessary to reference at distribution to obtain adequate approximation for
congiruction of confidence intervals’ (p. 492).

In some Stuations, Rubin’s multiple imputation (nortproper MI) inference may have inconsstent
variance estimates. A modified verson of Rao-Shao type jackknife variance estimate may be
used:

n 1 n a — C;] — (- i)m — l;I
Vi = ea(Y(MJ) Y(M|))2+a#(y((rvu]; - y(rvu))ZLJ’
ej=1 j=1 u
where
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In thisjackknife variance estimate, the first sum of squares are usud jackknife terms, and the
second sum of sguares are designed to capture the variations usudly added by the proper
multiple imputations.

Fay (1996) points out, “FWI resembles M1 but may be distinguished by (&) the manner in which
the imputations are made, (b) the procedures to obtain the estimates from the data set, and ()
the variance estimation and analysis of the resulting data s&t” (p. 492).

Some anomalies given by Fay demondtrate that M1 does not address effectively for some
relatively smple stuations. Thisis not surprising because, as Judkins (1996) pointed out that
Fay’s fractiondly weighted imputation (FWI) can be expected to yidd true variance no larger
than multiple imputation with the same number of replicates’ (p. 508). Based on his finding, Fay
suggests that researchers implement Monte Carlo studies to examine the performance
characterigtics of M1 to develop abody of systematic evidence before applying it to specific
problems.



However, Fay’s FWI method is subject to the same limitation as the Rao’ s jackknife described
in the preceding section; that is, it is basicdly a univariate tool and hard to extend to the
multivariate case. Rubin (1996) further criticizes the limitation of Fay’s FWI method: “Fay’s
gpproach is essentialy congtrained to the specid dtuation where (@) there is the Smplest pattern
of nonresponse (i.e., there are respondents with no missing data and nonrespondents with dl
outcome variables missing), (b) hot-deck draws (possibly weighted) are made from each
adjustment cell to impute donor values to nonrespondents, () there are effectively an unlimited
number of respondent donors in each adjustment cell, and (d) the adjustment cell classfication
and design weights are assumed to control adequately for nonresponse biases for al estimands
of interest. Since hot-deck classification is based on observed variables, Fay’ s gpproach
implicitly assumes an ignorable nonresponse mechanism, because otherwise (d) is violated” (p.
515).

4.3 Multipleimputation inference
The discussion in this section is based on Rubin (1996).
4.3.1  Objectives of imputations

The basic objective of imputation isto dlow ultimate data users to gpply their existing andysis
tools to any dataset with missng vaues using the same command structure and output standards
asif there were no missing data. Certain ad hoc methods of handling missing data, such as
“complete-case andyss,” “available-case andyss” and “fill-in with means’ satidfy thisbasic
objective and so have a certain appedl.

Theided supplementa objective of imputation is that each complete-data statistical tool can be
goplied to each incomplete dataset to obtain the same inference as if the dataset had no missing
vaues. This objectiveis obvioudy unachievable no matter what imputation method is used. It is
andogous to saying that the objective of asurvey isto obtain the same answer as a complete
census.

A less-ided achievable supplementd objective could be as follows. Assuming thet the ultimate
user’s complete-data andyssis satidicaly vdid for a scientific estimand, the answer that results
from gpplying the same andysis method to an incomplete-data remains datisticaly vdid for the
same scientific estimand assuming the truth of the database congtructor’ s posited modd for
missing data. This supplemental god can be achieved through some imputation methods, but can
not be achieved through others.

Before we discuss multiple imputation inference, let’ sfirg clarify the meanings of scientific
estimands and statistical validity.

Scientific Estimands. Quantities of scientific interest that can be calculated in the population
and do not change its va ue depending on the data collection design used to measure them (i.e,
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they does not vary with sample size and survey design, or the number of nonrespondents or
follow-up efforts). For example, scientific estimands include population means, variances,
corrdations, factor loadings, regresson coefficients, but exclude the sampling variance of a
sample mean under a particular sampling plan and the expectation of the complete-data sample
mean when missing vaues are filled in with zero or the observed sample means.

Satistically Validity. Thismust be afrequency concept, averaging over randomization
distributions generated by known sampling mechanisms and posited ditribution for the response
mechaniams. Bayesan vdidity is dso important, but is far more difficult to achieve in this context
because it requires far more compatibility between the database constructor and the analyst.

Firgt and foremogt, to achieve statistica vdidity for scientific estimands, point estimation must be
goproximately unbiased for the scientific estimands, averaging over the sampling and the posited
nonresponse mechanisms. Second, interva estimation and hypothesis testing must be vdid in the
sense that nominal levels describe operating characteristics over sampling and posited response
mechanisms. There are two versons of frequentist vaidity for nomind levels: randomization
validity and confidence validity. Randomization vaidity meansthet, for interval estimates, the
actua interva coverage equasthe nomind interval coverage, and for tests of hypotheses, the
actua rgection rate equas the nomind regection rate. Confidence vaidity meansthat, for
interval estimates, the actud coverage rate is greater than or equa to the nomina coverage rate,
and for tests of hypotheses, the actud regjection rate isless than or equd to the nomind regjection
rate. Confidence validity is amore generdly achievable objective.

To express the concepts in mathematical equations, let X be the array of al background

information fully observed in apopulation and Y be the array of outcome information in the
population that isto be sampled in the survey. Q = Q(X, V) is a scientific estimand. Suppose Q

is acomplete-data estimate of Q with sampling variance consistently estimated by the datistic
U. Then randomization vdidity with complete-datais equivaent to
E(Q|X,Y) @Q (unbiasedness of point estimate)
EU | X,Y) @/ar (QX,Y) (unbiasedness of variance estimate).
For confidence validity with complete data, the second condition is replaced by
E(U|X,Y)2 var(@X.Y).
4.3.2  Multipleimputetion inference

The god of multiple imputation (sometimes aso called repeated imputation) isto provide
datidicadly vaid inference in the difficult red-world situation where (1) ultimate users and
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database congructors are distinct entities with different andlyses, models, and capabilities, and
(2) there typicdly is no one accepted reason for the missing data.

Multiple imputation was designed to satisfy both the achievable basic objective and the
achievable supplementd objective stated in preceding sub-section by usng Bayesan and
frequentist paradigms in complementary ways. the Bayesian modd-based approach to create
procedures, and the frequentist (randomization-based approach to evaluate procedures.

Multiple imputation is based on the following Bayesian results:

P(Q|Yobs = OP(QIYobs ’YMS) P(Ymis|Yobs )deis '
or inwords

(Actud pogterior distribution of Q) = AVE (complete-data posterior distribution of Q),

where AVE (complete-data posterior distribution of Q ) refersto the average over the repeated
imputations, which are draws from P(Ymis | Yobs), Which isthe posterior predictive distribution of
missing data given the observed data. About the first two moments, we have:

E(Q}Yae) = ELE(Q¥,ps, Vo) Vo

or inwords

(Posterior mean of Q) = AVE (repeated compl ete-data posterior means of Q)

Yobs ’ Ym's)

V(@QY) = EV(Q Vo] #VIE QY0 Yoo Vo] -

Suppose that we have m sets of repeated imputations, and the Ith (I=1, 2, ..., m) point esimate
and its corresponding variance- covariance estimate based on the | th st of imputed data using
dandard formulas are (Q,,,U.,) . Then the repeated-imputation estimate of Qs

6m = é.;nQ*l /m
The associated variance-covariance of Q_ is

+
mlB
m

ml

Tn=a.U,/m+
where U, = § "U., / m isthewithin-imputation variability, and

1 8 — —
B,=—=a(@Q -Q)Q -Q,¢

m-1.
is the between+imputation varigbility. We expect:



(Q- Q)~N(OT,),
where Q, :rlrigl(jm and T, :H&T’“'

A “proper” multiple imputation procedure treats (X, Y) and the intended sample (as indicated by
) asfixed, and dedls with the fixed but unknown values of the complete-data statistics (Q,U) in
the sample asiif they were estimands. That is, the randomization didribution criticaly involved in
the definition of proper multiple imputation is generated by the response mechanism, in which X,
Y, and | arefixed , and the response indicator R is the random variable. That means a proper
imputation mug sty the followings:

EWQ|X.Y,1) @Q (4.1
E(D,|X.Y,1) @u (4.2)
E(B,|X,Y,1) @ar(Q|X,Y,1) (4.3)

The definition of proper concerns the Situation where “population” equals complete-data
sample, “estimands’ equals complete-data satistics (Q,U) , and “survey design” equasthe
posited response mechanism. The criterion is vaid frequency inference, and the method for
creating inferences is Bayesian predictive inference usng smulated vaues.

It follows from (4.1)—(4.3) that, if the complete-data inference is randomization-valid and the
multiple imputation procedure is proper, the infinite-m repested imputation inference is
randomization-valid under the posited response mechanism.

Rubin (1987, chapter 4) presented anadytic results, smulation eva uations, and many examples
of proper and improper multiple imputation methods, where the evaluations were dl from the
random:response randomization- based frequentist perspective. The trick in many of the
examples of proper imputation was to get the variance condition (4.3) correct, and it was
shown that when drawing imputations to gpproximeate repetitions from a sensible Bayesian
modedl, conditions (4.1)—(4.3) typicdly followed automaticaly. The more straightforward
conditions, (4.1) and (4.2), typicaly were smple properties of any intelligent imputation scheme
that tried to track the data. An example of amethod that does not track the dataiis “fill in the
mean,” which, athough it may satisfy (4.1) for @ = y, failsto do sofor § =s? or for the 25"
percentile, or to satisfy (4.2) for U = §°/n, etc. Hot deck (bootstrap) and random-draw
regression methods tend to satisfy (4.1) and (4.2) but fail to satisfy (4.3) until aBayesan,
systematic between-imputation component of variability is added (e.g., viathe Bayesan
Bootstrap), to reflect uncertainty in the estimation of population parameters.

A multiple imputation procedure is strongly superefficient for the complete-data statistic O fif,
first, Q, and Q estimate the same estimand, that is, the procedure is “first-moment proper” for
Q: E(Q |X,Y)=E(Q|X,Y), and second @, has no larger variance than the complete-data



estimateitsalf: var(Q, |X,Y) £ Var(Q|X,Y) . If the second condition is replaced by
Cov(Q, ,(j| X,Y) £ Var ((§| X,Y), thenitis caled superefficient imputation. Strongly
superefficient imputation implies superefficient imputation.

A multiple imputation procedure is confidence-proper for the complete-data statistics (Q,U) if
the imputations are “firgt-moment proper” for (Q,u) and

EW@,|X.)= EQUIX.V)
andif B, conservatively estimatesthe “excess variance” of Q, over Q:

E(By|X,Y) ® Var (Qy|X,Y) - Var (Q[X,Y)

If amultiple imputation procedure is proper for (Q,U) it is confidence proper for (Q,u). If the
complete-datainference based on (Q,U) is confidence vaid and the multiple imputation
procedure is confidence proper for (O,U), then the repeated-imputation inference is confidence
vaid no matter how complex the survey desgn.

According to Rubin (1996), any imputation method that satisfies the vdidity objectivein
generdity must not only reflect the underlying response mechanism but must so be arandom
draw method. Nonrandom draw methods can be applied in specia cases but require specid
andysistechniques. Of course, the development of user-friendly appropriate software for
cregting multiple imputations and andyzing multiply-imputed datais still badly needed.

Rubin (1996) dso advisesinduding dl varigbles in a multiple imputation modd to make it
proper in generd. If X iscorrdated with Y but not used to multiply-impute Y, then the multiply-
imputed dataset will yidd estimates of the (X, Y) corrdlation biased towards zero. Thus, the
danger with an imputer’s modd is generdly in leaving out predictors rather than including too
many, and the advice has aways been to include as many variables as possible when doing
multiple imputation. Nevertheess, because problems can occur when the imputer’ s mode
leaves out important predictor variables, the database constructor must include a description of
the imputation modd with the multiply-imputed database, so that ultimate users know which
relationships among variables have been implicitly set to zero. Thisis obvioudy good advice in
principle, but it may be difficult to do in practice.

4.3.3  Current issues concerning multiple imputation

Rubin (1996) dso discussed current issues concerning multiple imputation. Thefird issue
focuses on itsimplementation: operationd difficulties for the database congructor and the
ultimate user, as well as the acceptability of answers obtained partialy through the use of
smulation. The second issue concerns the frequentist vaidity of repeated-imputation inferences



when the multiple imputations are not proper, but appear “reasonable’ in some sense.
Specificaly, Rubin raised four questions and tried to answer them:

(1) Ismultiple imputation unprincipled or unacceptable because it uses simulation?

It is critical to remember that multiple imputation does not pretend to create information through
amulated vaues but smply to represent the observed information thisway to make it amenable
to vdid anadyss usng complete-data tools. The extra noise crested when using afinite number
of imputationsis the price to be paid for thisluxury.

With multiple imputation, the smulaion is only being used to handle the missing information, with
reliance for handling the rest of the information left to the complete-data method, be it andytic
or smulation-based. Jackknife and Bootstrap use many more Smulations. More explicitly,
hundreds or thousands of smulations will be needed for bootstrap or jackknife methods,
wheresas as few as five multiple imputations (or even three in some cases) are adequate under
each model for nonresponse. The asymptotic efficiency of the repeated-imputetion finite-m
edtimate relative to the infinite m estimate is [1+ (g / m)] ¥2 in units of standard deviations,

which is close to one with redidtic fractions of missng information g and modest m.

(2) Ismultiple imputation too much work for the user?

(3) Doesit take too much work to create proper or approximately proper multiple
imputations?

(4) Can repeated imputations under an appropriate Bayesian model lead to invalid
inferences?

His arguments to these three questions are not very convincing and therefore are not repeated
here. There are no “right” answersto questions (2) and (3). Different people may have different
opinions. Regarding question (4), Fay (1996) seemsto givea“yes’ answer; that is, it is possble
that multiple imputation under a Bayesian modd may leed to invdid inferences.



Chapter 5 Simulation Study
5.1 Simulation design
The amulation design factors are described as follows.
5.1.1  Didribution

Four sets of variables were generated for the smulation sudy. The didribution type and name
of each of the variables generated are described below.

(1) Fivevariablesfrom N(m 1) denoted as Norm1, Norm2, Norm3, Norm4, Norm5
withnel, ..., 5, respectively;

(2) Fivevaiables from adouble exponentid digtribution denoted as Dexpl, Dexp2,
Dexp3, Dexp4, and Dexp5 with means of 1, 2, 3, 4, and 5, respectively, and variances
equd to 2;

(3) Fivevariablesfrom mixed normd distributions (i.e., 95 percent N(m 1) and 5 percent
N(m 3%) denoted as MixNorm1, MixNorm2, MixNorm3, MixNorm4, and
MixNorm5 with n¥1, ..., 5, respectively.

(4) Five variablesfrom mixed normd digtributions (i.e., 95 percent N(m 1) and 5 percent
c?(4) - 4+m) denoted as MixNChil, MixNChi2, MixNChi3, MixNChi4, and
MixNChi5with me1, ..., 5, respectively.

Thefirg three sets of variables were symmetric about their means, while the fourth set of
variables was right skewed. The five variables in each set had meansof 1, 2, 3,4, and 5
respectively. Each set of five variables were correlated with the following corrdaion matrix:

&l 09 07 05 036
9 1 08 06 04
607 08 1 07 05°
ég.s 06 07 1 06

3 04 05 06 12

The corrdation coefficients between different sets of variables were smdll.
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5.1.2

@D

2

3

(4)

()

Missing mechanism

MCAR Missng vauesin variables Norm1, Dexpl, MixNorml, and MixNChil were
missing completely at random (MCAR);

Tail values more likely missing (unconfounded): Missing vauesin Norm2

were created with probability of exp(-l |[Norm1-1|), where| was determined so that
on average 10 percent, 20 percent, 30 percent, and 40 percent missing values were
generated for the four missing rate categories under study. This was an unconfounded
missing mechanism. Since Norm1 and Norm2 were positively correlated with
correlation coefficient 0.9, tall values were missing with higher probabilities. Missng
vauesin Dexp2, MixNorm2, and MixNChi2 were smilarly created usng Dexpl,
MixNorm1, and MixNChil;

Large values more likely missing (unconfounded): Missng valuesin Norm3
were created with probability of exp[ -l (Norm2-2)], where| was determined so
that on average 5 percent, 10 percent, 15 percent, and 20 percent missing values
were generated for the four missing rate categories under study. Thiswas an
unconfounded missng mechanism. Since Norm2 and Norm3 were positively
correlated with correlation coefficient 0.8, large values of Norm3 were missing with
higher probabilities. Missng valuesin Dexp3, MixNorm3, and MixNChi3 were
amilarly crested usng Dexp2, MixNorm2, and MixNChi2;

Center values more likely missing (unconfounded): Missng vauesin Norm4
were created with probability of 1-exp[ -l |[Norm3-3|], wherel was determined so
that on average 10 percent, 20 percent, 30 percent, and 40 percent missing values
were generated for the four missing rate categories under study. Thiswasan
unconfounded missng mechanism. Since Norm3 and Norm4 were positively
correlated with corrdation coefficient 0.7, center vaues of Norm4 were missing with
higher probabilities. Missng vaues in Dexp4, MixNormd4, and MixNChi4 were
amilarly creasted usng Dexp3, MixNorm3, and MixNChi3;

Tail values more likely missing (confounded): Missing vauesin Norm5

were created with probability of 1-exp[-I |[Norm5-5|], wherel was determined so
that on average 10 percent, 20 percent, 30 percent, and 40 percent missing values
were generated for the four missing rate categories under study. Thiswasa
confounded missing mechanism since the probabilities of missng NormS5 depended on
itsdlf. Missing vauesin Dexp5, MixNorm5, and MixNChi5 were smilarly crested.

We use the term “one-side missng mechanism” for mechaniam (3) and the term “two-side
missing mechanism” for the other four mechanisms for the convenience of description.



513 Misangraes

For missing mechanisms (1), (2), (4), and (5), the four types of missing rates were 10
percent, 20 percent, 30 percent, and 40 percent, while for missing mechanisms (3), the
four types of missing rates were 5 percent, 10 percent, 15 percent, and 20 percent.

5.1.4  Imputation methods

(1) Mean Imputation (deterministic): Missing vaues were replaced with the sample
mean.

(2) Ratio Imputation (determinigtic): Missing vauesin y were replaced by

-1
Yi :yﬁs X +1

Xobs

where y _and x, were the means of the observed vaues for the target variable and

auxiliary variables respectively. Norm1, Norm2, Norm3, and Norm4 served as
auxiliary variables for Norm2, Norm3, Normd, and NormS, respectively.

Since the means of the target variables were one more than the means of the auxiliary
variables, we subtracted 1 from the numerators of the ratios and added 1 back to the
find imputed values. This means that we used ratio imputation model E(y- 1) = bx

instead of E(y) = bx because the later model led to very bad results.

We did not use ratio imputation for Norm1 since we needed to creste a complete
auxiliary variable to gart the ratio imputation process. Because missing vauesin
Norm1 were missing completely at random, we started with this variable and imputed
its missing vaues using the mean with disturbance method described in (5) below.

The other three sets of five variables were imputed in the same way as the norma
variables.

(3) Sequential nearest neighbor hot deck method (determinigtic): Thisisaso cdled the
traditional hot deck method. To impute any one of the five varigblesin each s, the
datawerefirgt sorted by the other four variables of that set. The observed mean
served as the sarting stored value. Then the sequential imputation process started to
check each record in the sorted datafile. If arecord had aresponse for the target
variable, the stored value was updated by this new response vaue; if arecord missed
the target variable, the currently stored value would serve as the imputation value.
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(4)

()

(6)

()

(8)

9)

Random imputation method (random): Randomly drew imputations from the
observed vaues (with replacement).

Mean imputation with disturbance (random): Random disturbances drawn from
N(0, s?) were added to the mean imputation (1), where & is the sample variance.

Ratio imputation with disturbance (random): Random disturbances were drawn
from N(0, s°) were added to the ratio imputation (2), where & is the sample variance.

Approximate Bayesian Bootstrap (ABB) method (random): First drew r vaues
randomly with replacement from the observed values v,,...,Y. to create Y, _, and then

obs’

drew m vaues randomly with replacement from Y, . for imputation, wherer and m
were the number of observed values and that of missing vaues.

Bayesian Bootstrap (BB) method (random): Firgt, drew r-1 uniform random
numbers between 0 and 1, and |t their ordered valuesbe a,, ...,a, ,; dso let 8,=0
and a,=1, where r was the number of respondents. Then, drew each of the m missng
values by drawing from v, ...,Y, with probabilities (a, - a,), (a, - a,) ... (1- a,_,);
that is, independently m times, drew a uniform random number u, and imputed ; if
a_,<ufa (=12 ..,r).

PROC IMPUTE (random): First, used a stepwise regression approach to find

the best regression equations and then used the predicted regresson vauesto form
the “optima” imputation classes. Then, for each missing record, two observed vaues
were drawvn and weighted to form the imputation value. One of the two observed
vaues were drawn according to the estimated distribution of the observed values from
Its own imputation class and the other from the nearest imputation class.

(10) Data Augmentation (random): This Bayedan iterative method assumed two

digtributions: the distribution of the data and the prior distribution of the parameters.
The imputation process conssted of two steps: (i) 1-step: with current parameter
edimates, drew imputations for the missing vaues from the predicted distribution of
the data; (ii) P-step: with both the observed data and the imputed va ues of the missing
data, drew parameter estimates from their posterior distribution. To dtart thisiterative
process, we may use the EM dgorithm to obtain initid parameter estimates for the first
|-step. Schafer’ s softwar e was used to implement this method in our smuletion. This
software assumes multivariate norma distribution for the data, and normd prior for the
parameters of means and normal-inverted Wishart for the variance-covariance
parameters.



(11) Adjusted data augmentation method (random): If the normality assumption for
the continuous datain Schafer’ s software isin question, it is desrable to let the
observed data Yos influence the shape of the distribution of vauesimputed for Y.
We can accomplish thisasfollows. Firs m and s ** were drawn in the same way
from their posterior distributions asin Schafer’ s software. Then the components of m
dimensiond vector X = (X,,..., X,) weredravn with replacement from Yo,s. Under

repeated draws from Y, the standardized variable

Z = (X - V)N - D5 I

had expected vaue 0 and variance 1. Findly, the m components of Y,is were set
equatom +s’z,i=1,2,....,m.

For each combination formed by the above smulation factors, 200 replicate runs were
performed. We assessed the imputation methods based on their average performance over the
200 replications. The sample size for each replicate data set was 100.

5.2 Simulation results

We compared the imputation methods in terms of bias of parameter estimates (mean, median,
firgt and third quartiles), bias of variance estimates (sngle and multiple imputations), coverage
probability, confidence interva width, and average imputation error. Analyses and conclusions
according to each criterion based on the smulation results follow. The detalled amulation results
are presented in tables 5.2.1.1-5.2.7.5.

521  Biasof population mean estimates

Tables 5.2.1.1-5.2.1.5 present the biases of population mean estimates for the 11 imputation
methods under study. Table 5.2.1.1 combines the four missing rate categories with overall
missing rates of around 25 percent for missing mechanisms (1), (2), (4), and (5), and about 10
percent for missng mechanism (3). The remaining four tables describe the biases for missing
rate categories 10 percent, 20 percent, 30 percent, and 40 percent. The numbers of missing
vaues for one-gde missng mechaniam (3) are about hdf of those for the other four two-side
missing mechanisms.

For symmetric distributions (normd, double exponential, and mixed normal) and two-sde
missing mechanisms, the population mean estimates based on the incomplete data are
theoreticaly unbiased. Therefore, the valuesin the firgt three rows in each block except block 3
of tables5.2.1.1-5.2.1.5 are all pretty close to zero. For these cases, it does not make much
sense to compare the imputation methods in terms of improvement of biases.
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When large values are more likely to be missing, block 3 of table 5.2.1.1 shows thet the
negetive biases caused by missing values, which are the same as those for the mean imputation
method, are consderable for dl four types of distributions athough there are only about 10
percent missing vaues. As the distributions depart further from norma, the biases become more
and more serious. The ratio imputation method, ratio imputation with disturbance method, and
Schafer’ s software perfectly corrected the biases. PROC IMPUTE and the sequential nearest
neighbor hot deck method improved the biases substantidly, but PROC IMPUTE hasa
sgnificant advantage over the hot deck method. Since the adjusted data augmentation method
introduces more impact of the observed data and the observed data are biased for missing
mechaniam (3), this method results in only dight (negligible) improvement of the biases. All other
imputation methods are helpless with the nonresponse biases because these methods do not use
any auxiliary information from other variables.

We believe that one reason why the ratio imputation method performs so well is because we
used the same variables to create and to impute the missing vaues for each target variable. The
second reason is the high correlation coefficients (at least 0.6) between the target variables and
the auxiliary variables used by the ratio imputation method. The ratio imputation method is more
sengtive to the modd specification because it directly uses the predicted values from the
eguations as imputation vaues. Actudly, when we used ratio imputation modd  E(y) = bx

ingead of E(y- 1) = bx inour fird atempt, the results were worse than any other method.

Later we subtracted 1 from y so that the means of y-1 and x were equa. But thisisnot a
requirement of the ratio imputation method. It is more natura for many analysts to consider the
modd E(y) = bx toimputey with auxiliary variable x rather than E(y- 1) = bx. Therefore, we

should be very cautious in the selection of ratio imputation models in redl gpplications where the
underlying missng mechanisms and the data distributions are generaly unknown.

The fourth row of each block in tables 5.2.1.1-5.2.1.5 present the biases for the right skewed
digtribution, the mixer of 95 percent Normal and 5 percent Chi-square. These biases are not
severe when the missing rates are low. As the missing rates increase, the biases become
considerable. For the MCAR missing mechanism, al imputation methods are supposed to
provide unbiased mean estimates. For missing mechanisms (2) and (3), Sncetail vauesare
more likely missng and the right Sde has more tail vaues with the right skewed digtributions, the
mean estimates based on the incomplete data will underestimate the population mean. It is
evident that the biases with the confounded mechanism (5) are much more serious than with the
unconfounded mechanism (2). On the other hand, for missng mechanism (4), when center
vaues are more likely missing, the estimates based on the incompl ete data tend to overestimate
the population mean. But the right skewness will not have as much effect with this missng
mechanism as with missing mechanisms (2) and (5) since center vaues have much less effect on
the mean estimates than tail values. That iswhy row 4 of block 4 in tables 5.2.1.2-5.2.1.4 does
not show positive biases. However, the postive biases are subgtantia in row 4 of block 4 in
table 5.2.1.5 when the missing rate increases to 40 percent.
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We found earlier that ratio imputation with or without disturbance, Schafer’ s software, PROC
IMPUTE, and hot deck are dl very effective in improving the biases caused by missng
mechanism (3). However, the improvement is much lessimpressive for the biases caused by the
right skewness of the digtributions, dthough these methods can il provide improvement in
most cases when considerable biases exist with the incomplete data. Overdl, they are il alittle
better than the other methods.



Table5.2.1.1—Bias of population mean estimates (overall *)

Missing Missing | Mean Ratio Hot Proc Adj.
M echanism Distribution Rate Imp. Imp. Deck Random Mean+e Ratio+e ABB BB Impute Schafer DA
1. MCAR Normal 24.7% | -0.005 0.012  -0.007 -0.009 -0.003 -0.008 -0.003 -0.006 -0.004
Dexp 25.0% | -0.004 0.014 0.001 0.000 -0.009 -0.015 -0.003 -0.004 0.003

MixNorm 24.9% | 0.003 0.025 0.003 0.009 0.009 0.002 -0.004 -0.005 0.001

MixNChi 24.9% | 0.009 0.079 0.011 0.011 0.011 0.033 0.014 0.008 0.022

2. Unconfounded  Normal 17.7% | 0.005 -0.002 0.000 0.008 0.006 -0.007 0.006 0.007 -0.002 -0.001 0.006
(tail values Dexp 18.0% | -0.003 -0.011 -0.008 -0.007 -0.004 -0.009 0.004 -0.007 0.001 -0.003 -0.007
more likely MixNorm 18.5% [ 0.003 -0.009 0.001 0.000 0.001 -0.003 0.004 0.006 0.002 -0.004 0.001
missing) MixNChi 16.8% | -0.014 -0.034 0.016 -0.011 -0.012 -0.033 -0.011 -0.011 -0.023 0.000 -0.010
3. Unconfounded  Normal 9.5% | -0.094 0.002 -0.021  -0.095 -0.094 0.004 -0.093 -0.094 0.010 0.001 -0.085
(large values Dexp 9.2% | -0.118 0.003 -0.034 -0.116 -0.119 0.002 -0.119 -0.112 0.020 0.003 -0.103
more likely MixNorm 9.8% | -0.109 0.001 -0.024 -0.109 -0.110 0.004 -0.112 -0.104 0.011 0.001 -0.098
missing) MixNChi 9.1% | -0.159 -0.001 -0.061 -0.160 -0.157 -0.001 -0.151 -0.154 -0.045 -0.007 -0.143

4. Unconfounded Normal 225% | 0.013 0.032 0.009 0.016 0.010 0.032 0.012 0.012 -0.002 0.004 0.013
(Center values  Dexp 19.6% | -0.006 0.022 -0.014  -0.007 0.000 0.027 0.000 -0.007 -0.016 -0.005 -0.010
more likely MixNorm 21.0% | 0.010 0.031 0.008 0.007 0.010 0.030 0.018 0.016 -0.004 -0.002 0.007
missing) MixNChi 239% | 0.016 0.048 0.022 0.025 0.024 0.054 0.020 0.018 -0.012 -0.004 0.022

5. Confounded Normal 25.1% | -0.003 0.002 0.001 0.000 -0.005 0.004 -0.008 -0.001 -0.008 -0.006 -0.004
(tail values Dexp 26.9% | 0.005 0.016 0.012 0.010 0.004 0.012 0.006 0.008 0.006 0.006  0.006
more likely MixNorm 27.1% | -0.010 -0.005 -0.004 -0.009 -0.013 -0.007 -0.011 -0.006 -0.014 -0.019 -0.006
missing) MixNChi 27.1% | -0.076 -0.022 -0.045 -0.071 -0.070 -0.015 -0.072 -0.078 -0.065 -0.032 -0.062

* “QOveral” meansthat the four missing rate categories are combined. Biases in population means for each separate missing rate category are reported in tables
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Table 5.2.1.2—Bias of population mean estimates with about 10% missing values’

Missing Mean Ratio Hot Proc
M echanism Distribution Imp. Imp. Deck Random Mean+e Ratio+e ABB BB Impute  Schafer  Adj DA
1. MCAR Normal -0.019 -0.023 -0.021 -0.021 -0.024 -0.014 -0.019 -0.021 -0.020
Dexp -0.006 0.005 -0.006 -0.010 -0.001 -0.007 0.003 0.008 -0.003
MixNorm 0.033 0.036 0.039 0.045 0.043 0.035 0.031 0.027 0.040
MixNChi -0.028 -0.031 -0.013 -0.024 -0.034 -0.017 -0.027 -0.012 0.001
2. Unconfounded  Normal -0.001 -0.007 -0.005 -0.002 -0.002 -0.010 0.000 0.003 -0.004 -0.007 -0.003
(tail values Dexp 0.005 0.000 0.016 -0.002 0.000 0.004 0.009 0.004 0.009 0.005 -0.001
more likely MixNorm 0.016 0.023 0.022 0.022 0.017 0.021 0.021 0.018 0.026 0.026 0.027
missing) MixNChi -0.023 -0.046 0.007 -0.024 -0.013 -0.035 -0.024 -0.032 -0.030 -0.011 -0.015
3. Unconfounded Normal -0.042 0.014 0.002 -0.042 -0.044 0.016 -0.041 -0.044 0.007 0.008 -0.040
(large values Dexp -0.061 0.008 -0.011 -0.062 -0.059 0.009 -0.056 -0.062 -0.001 -0.002 -0.059
more likely MixNorm -0.035 0.028 0.011 -0.035 -0.039 0.031 -0.039 -0.036 0.020 0.020 -0.031
missing) MixNChi -0.091 0.015 -0.031 -0.084 -0.081 0.017 -0.091 -0.090 -0.022 0.004 -0.079
4. Unconfounded Normal -0.010 -0.006 -0.020 -0.003 -0.006 0.000 -0.009 -0.012 -0.011 -0.012 -0.003
(Center values  Dexp 0.014 0.020 0.009 0.006 0.007 0.027 0.015 0.006 0.012 0.013 0.005
more likely MixNorm 0.024 0.027 0.022 0.027 0.023 0.027 0.032 0.034 0.020 0.018 0.028
missing) MixNChi -0.013 -0.005 -0.024 -0.020 -0.024 -0.018 -0.036 -0.010 -0.023 -0.030 -0.013
5. Confounded Normal 0.005 0.003 0.011 0.006 0.007 0.010 0.007 0.004 0.006 0.000 0.006
(tail values Dexp 0.026 0.024 0.034 0.033 0.029 0.028 0.025 0.026 0.025 0.017 0.030
more likely MixNorm 0.004 0.010 0.009 0.004 0.001 0.012 0.010 0.011 0.006 0.010 0.006
missing) MixNChi -0.060 -0.008 -0.035 -0.050 -0.045 -0.006 -0.064 -0.050 -0.029 -0.010 -0.041

* There are about 5% missing values for missing mechanism 3.



Table 5.2.1.3—Bias of population mean estimates with about 20% missing values’

Missing Mean Ratio Hot Proc
M echanism Distribution Imp. Imp. Deck Random Mean+e Ratio+e ABB BB Impute  Schafer  Adj DA
1. MCAR Normal -0.003 0.003 0.001 -0.005 0.002 -0.010 -0.007 -0.011 0.000
Dexp -0.013 -0.014 0.006 -0.001 -0.023 -0.024 -0.024 -0.012 0.000
MixNorm -0.003 0.004 -0.003 0.006 -0.005 0.004 -0.012 -0.012 -0.006
MixNChi -0.012 0.004 -0.028 0.016 -0.007 -0.008 0.022 0.016 -0.016
2. Unconfounded  Normal -0.001 -0.008 0.003 0.000 0.001 -0.017 0.005 -0.002 -0.004 -0.001 -0.002
(tail values Dexp -0.007 -0.003 0.019 -0.008 -0.003 0.009 -0.013 -0.006 -0.004 -0.006 -0.010
more likely MixNorm 0.009 -0.014 0.005 0.003 0.016 -0.006 0.008 0.006 -0.004 -0.010 -0.003
missing) MixNChi 0.024 -0.009 0.086 0.026 0.020 -0.009 0.026 0.039 -0.001 0.020 0.018
3. Unconfounded  Normal -0.081 0.005 -0.019 -0.080 -0.083 -0.002 -0.080 -0.087 0.003 0.001 -0.075
(large values Dexp -0.092 0.019 -0.020 -0.090 -0.102 0.020 -0.094 -0.088 0.015 0.016 -0.082
more likely MixNorm -0.105 -0.003 -0.033 -0.112 -0.105 0.000 -0.103 -0.100 -0.009 -0.007 -0.106
missing) MixNChi -0.159 -0.004 -0.070 -0.167 -0.151 -0.003 -0.153 -0.145 -0.056 -0.014 -0.149
4. Unconfounded  Normal 0.001 0.016 0.019 -0.003 -0.002 0.013 0.014 0.006 0.000 0.005 -0.004
(Center values  Dexp -0.004 0.011 -0.006 -0.010 -0.005 0.015 -0.009 -0.004 -0.011 -0.009 -0.011
more likely MixNorm 0.002 0.020 0.001 0.003 0.002 0.022 0.003 -0.001 0.001 0.000 0.004
missing) MixNChi -0.004 0.026 -0.018 0.015 0.000 0.041 0.014 0.029 -0.015 -0.021 0.017
5. Confounded Normal 0.000 0.004 0.000 0.006 -0.009 0.011 0.001 0.007 -0.009 0.002 0.007
(tail values Dexp 0.003 0.009 0.005 0.007 0.006 0.005 0.012 -0.016 0.003 0.002 0.006
more likely MixNorm 0.003 -0.002 0.001 0.002 0.001 -0.015 0.012 0.011 -0.002 -0.011 0.007
missing) MixNChi -0.086 -0.031 -0.032 -0.065 -0.078 -0.005 -0.076 -0.096 -0.065 -0.034 -0.062

* There are about 10% missing values for missing mechanism 3.



Table 5.2.1.4—Bias of population mean estimates with about 30% missing values’

Missing Mean Ratio Hot Proc
M echanism Distribution Imp. Imp. Deck Random Mean+e Ratio+e ABB BB Impute  Schafer  Adj DA
1. MCAR Normal 0.017 0.044 0.013 0.019 0.010 0.005 0.023 0.014 0.014
Dexp 0.035 0.052 0.035 0.038 0.034 0.025 0.031 0.030 0.043
MixNorm -0.034 -0.002 -0.027 -0.036 -0.020 -0.056 -0.042 -0.039 -0.031
MixNChi 0.005 0.090 0.003 0.013 0.005 0.039 0.006 -0.019 0.017
2. Unconfounded  Normal 0.032 0.019 0.029 0.039 0.041 0.012 0.022 0.035 0.019 0.021 0.037
(tail values Dexp -0.007 -0.020 -0.022 -0.009 -0.002 -0.020 0.004 -0.014 0.005 -0.001 -0.002
more likely MixNorm -0.019 -0.046 -0.043 -0.026 -0.025 -0.036 -0.024 -0.011 -0.040 -0.046 -0.034
missing) MixNChi -0.038 -0.048 -0.038 -0.037 -0.030 -0.058 -0.046 -0.025 -0.058 -0.017 -0.026
3. Unconfounded  Normal -0.093 0.018 -0.001 -0.097 -0.094 0.020 -0.092 -0.088 0.028 0.019 -0.084
(large values Dexp -0.139 0.002 -0.054 -0.141 -0.137 0.000 -0.136 -0.134 0.031 0.001 -0.125
more likely MixNorm -0.160 -0.035 -0.056 -0.160 -0.167 -0.032 -0.165 -0.158 -0.017 -0.029 -0.146
missing) MixNChi -0.203 -0.028 -0.057 -0.203 -0.211 -0.032 -0.187 -0.202 -0.081 -0.040 -0.182
4. Unconfounded Normal 0.041 0.063 0.034 0.051 0.044 0.066 0.040 0.028 0.019 0.030 0.043
(Center values  Dexp -0.022 0.010 -0.004 -0.021 0.002 0.008 -0.006 -0.020 -0.045 -0.019 -0.022
more likely MixNorm -0.012 0.019 -0.016 -0.009 -0.019 0.022 0.005 -0.001 -0.023 -0.028 -0.015
missing) MixNChi -0.027 0.025 -0.023 -0.044 -0.027 0.033 -0.045 -0.031 -0.050 -0.045 -0.043
5. Confounded Normal -0.001 0.013 0.002 0.000 0.004 0.018 -0.009 0.004 -0.001 -0.006 -0.007
(tail values Dexp -0.014 -0.005 0.000 -0.009 -0.023 -0.019 -0.003 0.000 -0.029 -0.007 -0.008
more likely MixNorm -0.036 -0.022 -0.031 -0.042 -0.045 -0.017 -0.043 -0.027 -0.041 -0.045 -0.042
missing) MixNChi -0.095 -0.047 -0.064 -0.105 -0.096 -0.034 -0.098 -0.109 -0.091 -0.063 -0.100

* There are about 15% missing values for missing mechanism 3.
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Table 5.2.1.5—Bias of population mean estimates with about 40% missing values *

Missing Mean Ratio Hot Proc
M echanism Distribution Imp. Imp. Deck Random Mean+e Ratio+e ABB BB Impute  Schafer  Adj DA
1. MCAR Normal -0.018 0.023 -0.021 -0.027 -0.002 -0.015 -0.010 -0.006 -0.009
Dexp -0.032 0.012 -0.030 -0.026 -0.045 -0.053 -0.022 -0.040 -0.029
MixNorm 0.018 0.062 0.001 0.021 0.016 0.025 0.009 0.004 -0.001
MixNChi 0.072 0.253 0.083 0.039 0.078 0.118 0.054 0.048 0.084
2. Unconfounded  Normal -0.010 -0.013 -0.028 -0.007 -0.018 -0.013 -0.005 -0.006 -0.018 -0.017 -0.006
(tail values Dexp -0.003 -0.022 -0.045 -0.009 -0.013 -0.028 0.014 -0.013 -0.005 -0.011 -0.016
more likely MixNorm 0.004 0.003 0.020 0.002 -0.003 0.009 0.011 0.011 0.025 0.013 0.014
missing) MixNChi -0.018 -0.032 0.008 -0.008 -0.023 -0.029 0.001 -0.027 -0.001 0.008 -0.016
3. Unconfounded  Normal -0.159 -0.027 -0.064 -0.160 -0.156 -0.020 -0.159 -0.158 0.000 -0.023 -0.141
(large values Dexp -0.178 -0.016 -0.052 -0.170 -0.179 -0.022 -0.192 -0.166 0.033 -0.005 -0.145
more likely MixNorm -0.134 0.013 -0.018 -0.131 -0.130 0.018 -0.139 -0.122 0.049 0.020 -0.109
missing) MixNChi -0.182 0.012 -0.086 -0.185 -0.183 0.015 -0.175 -0.178 -0.022 0.022 -0.163
4. Unconfounded Normal 0.018 0.054 0.003 0.017 0.004 0.050 0.004 0.026 -0.017 -0.007 0.014
(Center values  Dexp -0.011 0.046 -0.053 -0.003 -0.004 0.058 -0.002 -0.010 -0.018 -0.005 -0.011
more likely MixNorm 0.024 0.059 0.025 0.008 0.033 0.052 0.031 0.033 -0.013 0.003 0.009
missing) MixNChi 0.109 0.144 0.154 0.147 0.149 0.159 0.148 0.083 0.038 0.081 0.125
5. Confounded Normal -0.017 -0.011 -0.011 -0.014 -0.023 -0.022 -0.032 -0.021 -0.028 -0.020 -0.020
(tail values Dexp 0.007 0.035 0.009 0.010 0.005 0.035 -0.008 0.004 0.024 0.013 -0.006
more likely MixNorm -0.012 -0.006 0.005 0.000 -0.008 -0.007 -0.022 -0.018 -0.019 -0.028 0.006
missing) MixNChi -0.062 -0.004 -0.046 -0.062 -0.063 -0.017 -0.051 -0.055 -0.076 -0.022 -0.045

* There are about 20% missing values for missing mechanism 3.



5.2.2  Biasof variance esimates with Sngle imputation

Tables 5.2.2.1-5.2.2.5 report the relative biases of variance estimates based on the incomplete
data and the data imputed by the 11 methods. The relative biases are defined as.

(Estimated Var) - (True Var) (5.1)
True Var

Relative Bias=

In this formula, we are discussing the variance among the data Var (y, ) , not the variance of the
mean estimates Var () , dthough the relative biases of the two variance estimates are equal for

al the imputation methods. We will use the statement “the variance is 20 percent overestimated”
if the rdlative biasis 0.20, and say “the variance is 20 percent underestimated” if the relative bias
is-0.20.

For the MCAR missing mechaniam, the variance estimates based on the incomplete data are
supposed to be unbiased, which was confirmed by the smulation. It isto be expected that the
mean imputation method serioudy underestimates the variances since the data were centralized
by using the mean as the imputed vauesfor dl missing cases. One way to correct this
underestimation is to multiply the variance etimates by the factor (n-1)/(r-1), where nisthe
samplesizeand r isthe number of observed vaues. The other way isto add random variation
to the mean asimputation values as done by the mean with disturbance imputation method.
Actudly, the variance estimates based on the incompl ete data and those based on the mean with
disturbance imputation method are dways gpproximately equa across dl missing mechanisms
and al digributions.

For MCAR, dl other methods seem fine except the sequentia hot deck method which provides
afew very large variance estimates for the mixed digtribution of 95 percent norma and 5
percent Chi-square. For example, the sequentia hot deck overestimated the variance by 70
percent and 24 percent respectively when there are 40 percent and 30 percent missing values.
Thisis probably because some extremely large values were imputed too many times by the hot
deck sequentiad imputation scheme. Therefore, the sequentia hot deck imputation method is
dangerous even for MCAR missing mechaniam if extreme values or outliers exigt in the
observed data. For other distributions, the hot deck method works well.

For unconfounded missing mechanism (2) where tail vaues are more likdy missing, the
incomplete data shrink to the center and, therefore, the variance estimates based on the
incomplete data are too small. This underestimation is much less serious than for the confounded
missing mechaniam (5) where tail values are dso more likely missng but the missing probabilities
depend on the target variable itself. For mechanism (2), Schafer’ s software performs better than
the ratio imputation, which is better than PROC IMPUTE, which is better than the hot deck
method. However, dl four methods dramatically improved the negative biases of the variance
estimates. The ratio imputation with disturbance method tends to overestimate the variances.
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Sight improvement has been found with the adjusted data augmentation method. It is evident
and expectable that the BB, ABB, random, and the mean with disturbance imputation methods
al have dmogt the same variance estimates as the incomplete data, while the mean imputation
method worsens the variance estimates.

For unconfounded missing mechanism (3) where large vaues are more likely missing, the
incomplete data have shorter range than the complete data; therefore, the incomplete data will
underestimate the true variance. Since the missing rates are dways less than 20 percent, the
underestimation of the variancesis not severe. Except for one case, dl negative biases are
smaller than 11 percent of the true variances. In this cases dl imputation methods except the
mean imputation provide fine variance estimates. However, Schafer’ s software, ratio imputation,
PROC IMPUTE, and the hot deck method till shows some advantage over the other methods.

For unconfounded missing mechanism (4) where center values are more likely missng, the
incomplete data overestimate the variances and so do the random, mean imputation with
disturbance, ratio imputation with disurbance, ABB, and BB methods, while the mean
imputation gtill underestimates the variances. These methods cannot improve the positive biases
at al. Overdl, Schafer’ s software has the best performance, followed by the hot deck method,
which isfollowed by PROC IMPUTE, which is followed by the ratio imputation. All four
methods substantidly improved the postive biases of variance estimates. The hot deck method
has one bad case in which it overestimates the variance by 23 percent for the mixer of norma
and Chi-sguare when the missing rate is 40 percent, but it is sill a significant improvement over
the incomplete data which overestimate the variance by 37 percent. Again, the adjusted data
augmentation method can improve the biases dightly.

For confounded missing mechaniam (5) where tail vaues are more likely missng and the missing
probabilities depend on the target variable itsdlf, the incomplete data underestimate the
variances much more serioudy than for unconfounded missing mechanism (2). Agan, the
random, mean imputation with disturbance, ratio imputation with disturbance, ABB, and BB
methods do not help a dl with the biases. Schafer’ s software, adjusted data augmentation and
the hot deck method only dightly improve them. PROC IMPUTE only have improvement with
the mixed digtribution of norma and Chi-square which has much more serious underestimated
variances than the other distributions. For this digtribution, PROC IMPUTE is better than
Schafer’ s software, adjusted data augmentation, and the hot deck method. For this confounded
missing mechanism, the only methods which can subgtantialy improve the biasesin variance
edimates are ratio imputation with or without disturbance. These two methods are the only ones
in this sudy that directly use auxiliary variables to predict missng vaues. This probably implies
that we may have to use some directly predictive approach such as regression imputation or
ratio imputation to impute missng vaues if the missng mechanism is confounded, that is, if the
missing probabilities depend on the target variable itsdlf.

In summary, for the MCAR missing mechanism, dl imputation methods can provide acceptable
variance estimates except the mean imputation method, which needs to be adjusted with a



factor of (n-1)/(r-1). For unconfounded missing mechanisms, Schafer’s software performs best,
and ratio imputation, PROC IMPUTE, and the hot deck method can al improve the biases of
vaiance estimates dramaticdly, but the ratio imputation with disturbance method tends to
overestimate the variance. For the confounded missing mechanism, only the ratio imputation
method with or without disturbance subgtantialy improves the biases. The random, ABB, BB,
and mean imputation with disturbance methods are amost equivaent to the incomplete data for
al missng mechaniams, while the adjusted data augmentation method dways helps alittle, but
never much.
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Table 5.2.2.1—Relative bias of variance estimates with singleimputation (overall ")

Missing Mean Ratio Hot Proc Adj.
M echanism Distribution | Incomp Imp. Imp. Deck Random Mean+e Ratio+e ABB BB Impute  Schafer DA
1. MCAR Normal -0.002 | -0.250 -0.039 -0.019 -0.010 -0.008 -0.009 -0.027 0.012 -0.010
Dexp 0.029 | -0.234 -0.020 0.019 0.024 0.006 0.010 0.001 0.014 0.024

MixNorm 0.003 | -0.247 -0.039 -0.004 -0.004 -0.006 -0.028 -0.027 0.004  0.006

MixNChi 0.016 | -0.242 0.195 -0.011 0.007 -0.008 0.064 -0.044 0.026  0.018

2.Unconfounded Normal -0.125 | -0.279  0.033 -0.001 -0.123 -0.132 0.172 -0.130 -0.121  0.080 0.004 -0.097
(tail values Dexp -0.236 | -0.372  0.057 -0.065 -0.244 -0.237 0.174 -0.244 -0.240 -0.012 -0.009 -0.199
more likely MixNorm -0.191 | -0.341 0.064 -0.025 -0.205 -0.193 0.206 -0.205 -0.196 -0.006 -0.002 -0.162
missing) MixNChi -0.424 | -0.519 0.008 -0.204 -0.421 -0.429 0.097 -0.415 -0426 -0.110 -0.005 -0.357
3. Unconfounded  Normal -0.047 | -0.137 -0.018 -0.029 -0.050 -0.048 0.080 -0.046 -0.046  0.029 0.004 -0.041
(large values Dexp -0.042 | -0.131 -0.022 -0.024 -0.040 -0.040 0.058 -0.041 -0.045 0.042 0.003 -0.032
more likely MixNorm -0.045 | -0.138 -0.020 -0.024 -0.051 -0.051 0.068 -0.049 -0.041 0.041 0.004 -0.044
missing) MixNChi -0.107 | -0.190 -0.023 -0.052 -0.117 -0.107 0.057 -0.108 -0.098 -0.072 -0.009 -0.108

4. Unconfounded Normal 0.126 | -0.136 -0.082 0.014 0.114 0.118 0.171  0.119 0.119 -0.036 0.004  0.092
(Center values  Dexp 0.110 | -0.113 -0.084 0.017 0.109 0.110 0.133 0.110 0.111 -0.041 -0.006 0.088
more likely MixNorm 0.121 | -0.123 -0.083 -0.002 0.121 0.115 0.162 0.122 0.123 -0.036 -0.002 0.095
missing) MixNChi 0.146 | -0.144 -0.126 0.011 0.165 0.137 0.148 0.186 0.123 -0.099 -0.021 0.117

5. Confounded Normal -0.272 | -0.444 -0.146 -0.255 -0.282 -0.278 0.106 -0.269 -0.278 -0.309 -0.247 -0.267
(tail values Dexp -0.350 | -0.510 -0.162 -0.321 -0.358 -0.360 0.055 -0.354 -0.353 -0.373 -0.317 -0.344
more likely MixNorm -0.352 | -0.514 -0.178 -0.330 -0.353 -0.351 0.054 -0.361 -0.353 -0.375 -0.323 -0.338
missing) MixNChi -0.674 | -0.750 -0.228 -0.629 -0.678 -0.676 -0.075 -0.676 -0.680 -0.488 -0.550 -0.644

* “Qverall” meansthat the four missing rate categories are combined. Relative biases of variance estimates for each separate missing rate category are reported in
tables5.2.2.2105.2.2.5.
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Table 5.2.2.2—Rédative bias of variance estimates with single imputation with about 10% missing values”

Missing Mean Ratio Hot Proc Adj.
M echanism Distribution | Incomp Imp. Imp. Deck Random Mean+e Ratio+e ABB BB Impute  Schafer DA
1. MCAR Normal 0.000 | -0.091 0.001 -0.009 -0.008 0.003 -0.006 -0.003 0.012 -0.005
Dexp -0.012 | -0.112 -0.025 -0.016 -0.016 -0.021 -0.018 -0.016 -0.009 -0.011

MixNorm 0.011 | -0.092 -0.008 -0.001 0.008 -0.001 0.012 -0.007 0.016  0.003

MixNChi 0.015 | -0.076 -0.016 0.010 0.018 0.009 0.116 -0.029 0.033  0.028

2. Unconfounded  Normal -0.052 | -0.140 0.030 0.016 -0.044 -0.051 0.120 -0.057 -0.053 0.017 0.026 -0.031
(tail values Dexp -0.157 | -0.236  0.013 -0.032 -0.149 -0.157 0.071 -0.161 -0.152 -0.038 -0.021 -0.130
more likely MixNorm -0.135| -0.218 0.036 -0.007 -0.145 -0.135 0.134 -0.142 -0.141 -0.019 0.004 -0.129
missing) MixNChi -0.383| -0.439 0.049 -0.238 -0.393 -0.388 0.112 -0.379 -0.398 -0.074 0.046 -0.358
3. Unconfounded  Normal -0.014| -0.061 0.019 0.010 -0.019 -0.016 0.075 -0.011 -0.018 0.014 0.016 -0.017
(large values Dexp -0.038 | -0.080 -0.005 -0.021 -0.048 -0.039 0.028 -0.037 -0.036 -0.012 -0.010 -0.045
more likely MixNorm -0.037 | -0.084 -0.006 -0.015 -0.034 -0.048 0.041 -0.039 -0.038 -0.007 -0.010 -0.031
missing) MixNChi -0.047 | -0.087 0.073 0.041 -0.048 -0.047 0.122 -0.056 -0.053 -0.014 0.065 -0.048

4. Unconfounded Normal 0.028 | -0.068 -0.064 -0.019 0.023 0.026 0.021 0.023 0.020 -0.035 -0.023 0.021
(Center values  Dexp 0.053 | -0.030 -0.028 0.016 0.049 0.058 0.055 0.050 0.064 -0.009 0.014 0.046
more likely MixNorm 0.016 | -0.072 -0.069 -0.038 0.017 0.008 0.014 0.022 0.012 -0.044 -0.028 0.015
missing) MixNChi 0.008 | -0.109 -0.107 -0.071 0.064 0.004 0.008 -0.037 -0.021 -0.085 -0.062 0.035

5. Confounded Normal -0.139 | -0.223 -0.088 -0.132 -0.137 -0.145 0.001 -0.133 -0.141 -0.154 -0.122 -0.132
(tail values Dexp -0.180 | -0.272 -0.096 -0.156 -0.178 -0.192 -0.009 -0.177 -0.186 -0.191 -0.152 -0.177
more likely MixNorm -0.182 | -0.275 -0.129 -0.167 -0.193 -0.184 -0.033 -0.197 -0.177 -0.196 -0.163 -0.190
missing) MixNChi -0.441 | -0.505 -0.147 -0.403 -0.449 -0.441 -0.070 -0.441 -0.458 -0.306  -0.335 -0.430

* There are about 5% missing values for missing mechanism 3.



Table 5.2.2.3—Rdative bias of variance estimates with single imputation with about 20% missing values”

Missing Mean Ratio Hot Proc Adj.
M echanism Distribution | Incomp Imp. Imp. Deck Random Mean+e Ratio+e ABB BB Impute  Schafer DA
1. MCAR Normal 0.015 | -0.198 -0.013 0.008 0.010 0.015 0.006 -0.015 0.014 0.015
Dexp 0.034 | -0.178 0.008 0.032 0.029 0.004 0.027 -0.001 0.039 0.038

MixNorm -0.004 | -0.203 -0.034 -0.021 -0.028 -0.002 -0.022 -0.023 0.001 -0.006

MixNChi -0.099 | -0.281 -0.145 -0.101 -0.095 -0.133 -0.153 -0.031 -0.043 -0.077

2. Unconfounded Normal -0.141 | -0.278 0.020 -0.010 -0.118 -0.155 0.149 -0.148 -0.136 0.013 -0.019 -0.089
(tail values Dexp -0.209 | -0.343 0.075 -0.030 -0.220 -0.215 0.228 -0.225 -0.232 -0.001 0.020 -0.187
more likely MixNorm -0.162 | -0.307 0.082  0.000 -0.183 -0.158 0.211 -0.184 -0.165 -0.012 -0.002 -0.146
missing) MixNChi -0.395 | -0.508 0.117 0.012 -0.418 -0.394 0.223 -0.380 -0.375 -0.124 0.078 -0.336
3. Unconfounded  Normal -0.061 | -0.136 -0.022 -0.046 -0.068 -0.067 0.041 -0.069 -0.060 -0.005 -0.017 -0.060
(large values Dexp -0.022 | -0.097 0.015 -0.005 -0.011 -0.019 0.093 -0.021 -0.027 0.027 0.030 -0.007
more likely MixNorm -0.060 | -0.139 -0.014 -0.030 -0.063 -0.061 0.056 -0.069 -0.054 0.007 -0.007 -0.056
missing) MixNChi -0.212 | -0.279 -0.091 -0.159 -0.218 -0.210 -0.046 -0.226 -0.190 -0.165 -0.084 -0.199

4. Unconfounded Normal 0.117 | -0.097 -0.077 0.014 0.104 0.103 0.146 0.126 0.109 -0.019 0.006  0.096
(Center values  Dexp 0.100 | -0.063 -0.053 0.037 0.093 0.096 0.123 0.099 0.114 -0.018 0.015 0.080
more likely MixNorm 0.097 | -0.089 -0.072 0.003 0.086 0.091 0.117 0.087 0.092 -0.033 -0.004 0.075
missing) MixNChi 0.095 | -0.090 -0.084 -0.008 0.094 0.107 0.074 0.094 0.163 -0.064 -0.006 0.077

5. Confounded Normal -0.224 | -0.379 -0.118 -0.201 -0.224 -0.234 0.099 -0.229 -0.230 -0.252 -0.199 -0.211
(tail values Dexp -0.267 | -0.419 -0.135 -0.249 -0.270 -0.273 0.068 -0.281 -0.263 -0.280 -0.230 -0.261
more likely MixNorm -0.286 | -0.439 -0.142 -0.266 -0.274 -0.288 0.057 -0.297 -0.289 -0.303 -0.252 -0.252
missing) MixNChi -0.709 | -0.789 -0.220 -0.650 -0.712 -0.710 -0.103 -0.708 -0.714 -0.513 -0.565 -0.679

* There are about 10% missing values for missing mechanism 3.



Table 5.2.2.4—Relative bias of variance estimates with singleimputation with about 30% missing values”

Missing Mean Ratio Hot Proc Adj.
M echanism Distribution | Incomp Imp. Imp. Deck Random Mean+e Ratio+e ABB BB Impute  Schafer DA
1. MCAR Normal -0.022 | -0.312 -0.058 -0.053 -0.022 -0.034 -0.024 -0.041 0.010 -0.043
Dexp 0.037 | -0.275 -0.025 0.001 0.039 0.035 -0.011 0.009 0.008 0.010

MixNorm -0.002 | -0.303 -0.051 -0.010 0.005 -0.004 -0.055 -0.024 -0.005 0.000

MixNChi 0.077 | -0.255 0.238 0.072 0.077 0.089 0.090 0.022 0.067  0.050

2. Unconfounded Normal -0.155| -0.335 0.047 -0.001 -0.162 -0.167 0.200 -0.152 -0.162 0.104 0.013 -0.125
(tail values Dexp -0.262 | -0.427 0.083 -0.063 -0.287 -0.260 0.207 -0.273 -0.267 -0.002 0.021 -0.224
more likely MixNorm -0.239 | -0.403 0.107 -0.066 -0.250 -0.233 0.254 -0.260 -0.241 -0.026 0.010 -0.195
missing) MixNChi -0.459 | -0.557 0.000 -0.240 -0.477 -0.461 0.105 -0.448 -0.470 -0.040 -0.039 -0.390
3. Unconfounded Normal -0.040 | -0.152 -0.018 -0.018 -0.037 -0.034 0.099 -0.036 -0.033 0.031 0.019 -0.027
(large values Dexp -0.044 | -0.149 -0.024 -0.028 -0.039 -0.048 0.070 -0.044 -0.047 0.084 0.009 -0.028
more likely MixNorm -0.011 | -0.130 -0.004 0.013 -0.031 -0.016 0.111 -0.007 -0.003 0.090 0.043 -0.024
missing) MixNChi -0.100 | -0.197 -0.039 0.021 -0.104 -0.091 0.068 -0.069 -0.073 -0.069 -0.025 -0.101

4. Unconfounded Normal 0.163 | -0.147 -0.090 0.021 0.148 0.149 0.194 0.164 0.157 -0.041 0.024  0.120
(Center values  Dexp 0.142 | -0.134 -0.103 0.015 0.153 0.163 0.153 0.135 0.138 -0.046 -0.012 0.132
more likely MixNorm 0.192 | -0.116 -0.065 0.053 0.198 0.188 0.247 0.197 0.198 -0.009 0.036 0.164
missing) MixNChi 0.113 | -0.217 -0.196 -0.102 0.101 0.108 0.1127 0.151 0.102 -0.168 -0.087 0.038

5. Confounded Normal -0.314 | -0.518 -0.174 -0.303 -0.332 -0.321 0.134 -0.318 -0.316 -0.363 -0.276 -0.313
(tail values Dexp -0.408 | -0.604 -0.183 -0.372 -0.428 -0.425 0.086 -0.404 -0.410 -0.444  -0.375 -0.405
more likely MixNorm -0.430 | -0.621 -0.206 -0.406 -0.427 -0.426 0.064 -0.449 -0.434 -0472 -0.395 -0.416
missing) MixNChi -0.734 | -0.817 -0.290 -0.691 -0.733 -0.738 -0.101  -0.742 -0.736 -0.514 -0.611 -0.694

* There are about 15% missing values for missing mechanism 3.



Table 5.2.2.5—Rdative bias of variance estimates with single imputation with about 40% missing values”

Missing Mean Ratio Hot Proc Adj.
M echanism Distribution | Incomp Imp. Imp. Deck Random Mean+e Ratio+e ABB BB Impute  Schafer DA
1. MCAR Normal -0.001 | -0.398 -0.085 -0.023 -0.019 -0.018 -0.013 -0.049 0.014 -0.009
Dexp 0.056 | -0.372 -0.036 0.059 0.045 0.005 0.043 0.013 0.018 0.058

MixNorm 0.006 | -0.389 -0.064 0.015 -0.001 -0.015 -0.046 -0.053 0.005 0.025

MixNChi 0.071 | -0.356 0.702 -0.027 0.027 0.003 0.205 -0.137 0.047 0.071

2. Unconfounded  Normal -0.151| -0.363 0.034 -0.009 -0.169 -0.154 0.220 -0.162 -0.133 0.188 -0.002 -0.142
(tail values Dexp -0.317 | -0.482 0.055 -0.135 -0.322 -0.318 0.190 -0.318 -0.310 -0.005 -0.057 -0.254
more likely MixNorm -0.230 | -0.435 0.032 -0.027 -0.241 -0.247 0.227 -0.235 -0.239 0.035 -0.019 -0.180
missing) MixNChi -0.457 | -0.573 -0.135 -0.349 -0.396 -0.472 -0.052 -0.454 -0.461 -0.200 -0.104 -0.345
3. Unconfounded  Normal -0.071| -0.200 -0.049 -0.062 -0.076 -0.073 0.105 -0.068 -0.072 0.075 0.000 -0.062
(large values Dexp -0.063 | -0.196 -0.074 -0.042 -0.060 -0.056 0.039 -0.062 -0.071 0.069 -0.019 -0.047
more likely MixNorm -0.070 | -0.200 -0.055 -0.064 -0.075 -0.078 0.065 -0.081 -0.068 0.073 -0.011 -0.063
missing) MixNChi -0.069 | -0.196 -0.035 -0.111 -0.100 -0.079 0.083 -0.080 -0.075 -0.040 0.006 -0.082

4. Unconfounded Normal 0.197 | -0.233 -0.099 0.039 0.183 0.195 0.325 0.164 0.192 -0.049 0.009 0.131
(Center values  Dexp 0.143 | -0.226 -0.154 0.002 0.140 0.122 0.202 0.155 0.129 -0.091 -0.043 0.094
more likely MixNorm 0.181 | -0.215 -0.125 -0.026 0.182 0.173 0.270 0.184 0.188 -0.058 -0.014 0.126
missing) MixNChi 0.369 | -0.160 -0.116 0.226 0.401 0.330 0.392 0538 0.248 -0.079 0.069 0.317

5. Confounded Normal -0.412 | -0.657 -0.205 -0.386 -0.436 -0.412 0.190 -0.395 -0.426 -0.466 -0.390 -0.414
(tail values Dexp -0.546 | -0.745 -0.235 -0.506 -0.556 -0.549 0.077 -0553 -0.555 -0.577 -0.513 -0.535
more likely MixNorm -0.509 | -0.721 -0.235 -0.480 -0.517 -0.505 0.127 -0.503 -0.512 -0.529 -0.482 -0.492
missing) MixNChi -0.812 | -0.888 -0.254 -0.774 -0.818 -0.816 -0.026 -0.812 -0.812 -0.621 -0.689 -0.771

* There are about 20% mi ssing values for missing mechanism 3.



5.2.3  Biasof variance esimates of population mean with five sets of imputations

Five sets of imputations were created for the eight random imputation methods under study.
Variance estimates based on the five sets of multiple imputations are obtained through Rubin’s

multiple imputation theory:

~ 18 s amt+ly 1 &y~ —
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where q and V, arethe parameter estimate and variance estimate, respectively, based on i-th

(i=1, ..., m) s=t of imputations. Thefirst termin (5.2) is caled the within-imputation variability,
and the second term is referred as the between-imputation varigbility.

Tables 5.2.3.1-5.2.3.5 present the relative biases of variance estimates of population mean
estimates. The relaive biases are defined asin (5.1). Multiple imputation variance estimates are
generdly larger than single imputation variance estimates since multiple imputation adds the
between-imputation variation.

If the data are missng completely at random, al methods except PROC IMPUTE and

Schafer’ s software substantialy overestimate the variances. For the combined data with about
25 percent missing values, the random, mean with disturbance, ratio with disturbance, and
adjusted data augmentation methods al overestimate the variance by 25 percent to 35 percent,
while ABB and BB methods overestimate the variances by 35 percent to 55 percent. Even with
a 10 percent missing rate, these methods overestimate the variances by more than 10 percent in
mogt cases. It seems that the second term in (2.2) is too much to add to the variance estimates.
The ABB and BB methods, which introduce more variation than the random method and are
conddered “proper” by Rubin (1987), seem to overestimate the variances most serioudly.
PROC IMPUTE provides the best variance estimates with thisided missng mechanism
dthough it isnot “proper” according to Rubin’s definition. Its multiple imputation variance
estimates can be consdered unbiased. Schafer’ s software is the second best and it dightly
overestimates the variances.

For unconfounded missing mechanisms (2) and (3) where the incomplete data underestimate the
variances, the multiple imputation variance estimates corrected more negative biases than the
single imputation variance estimates, as expected. PROC IMPUTE and Schefer’ s software
again have the best overdl performance. All other methods except the ratio with disturbance
method produce fine variance estimates. The ratio with disturbance method sgnificantly
overestimate the variances even for these two missing mechanisms when the incomplete data are
more concentrated around the center than the population distribution.

For the unconfounded missing mechanism (4) when center vaues are more likely missng and
the incomplete data are more diversified than the population distribution, the reative
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performances across the different imputation methods are smilar to those for the ided missing
mechanism (1). PROC IMPUTE works best and provides approximately unbiased variance
estimates, Schafer’ s software is the second best and dightly overestimates the variances. Other
methods al overestimate the variances,; the ABB and BB methods are the worst in terms of bias
of variance estimates.

For confounded missing mechanism (5) when the incomplete data serioudy underestimate the
variance, the extra variaion introduced by multiple imputation helps reduce the negetive biases
of dngle imputation variance estimates for dl methods except the ratio with disturbance
imputation method. The ratio with disturbance imputation method again overestimate the
variances. Except for the mixed digtribution of norma and Chi-square, PROC IMPUTE has the
largest negative biases and the ABB and BB methods have the smadlest biases, while dl the
other methods are close to the ABB and BB methods. For the mixed right-Skewed distribution
of norma and Chi-square, PROC IMPUTE has the smallest negative biases; however, dl
methods except the ratio with disturbance method il substantially underestimate the variances.

In summary, the ratio with disturbance imputation method aways overestimates the variances
for dl types of missng mechanisms when between-imputation variation isintroduced viamultiple
imputations. For this method, the idea of multiple imputation is obvioudy ingppropriate. PROC
IMPUTE seems to have the least between-imputation variation and it provides gpproximeately
unbiased variance estimates for the MCAR and al unconfounded missing mechanisms. The
ABB and BB methods introduce the most between-imputation variation and most serioudy
overestimate the variances for the MCAR and missing mechanism (4) when the incomplete data
are more diversfied than the true digtribution. For these two types of missng mechanisms,
multiple imputation variance estimates of al methods except PROC IMPUTE tend to
overestimate the true variances. For the other missing mechanisms when the incomplete deta are
less diverdfied than the true ditribution, introducing between-imputation variation can help
reduce the negative biases of variance estimates except for the ratio with disturbance method.



Table 5.2.3.1—Rédlative bias of variance estimates with five sets of imputations (overall ")

Missing Proc
M echanism Distribution Random Mean +e Ratio +e ABB BB Impute Schafer Adj DA
1. MCAR Normal 0.254 0.272 0.459 0.365 0.018 0.065 0.280
Dexp 0.327 0.323 0.458 0.449 0.021 0.087 0.327
MixNorm 0.283 0.303 0.400 0.348 -0.003 0.059 0.289
MixNChi 0.304 0.320 0.393 0.557 -0.010 0.069 0.324
2. Unconfounded  Normal 0.060 0.046 0.364 0.102 0.065 0.094 0.030 0.122
(tail values Dexp -0.088 -0.086 0.343 -0.014 -0.059 0.000 0.016 0.010
more likely MixNorm -0.026 -0.017 0.359 0.024 -0.021 0.010 0.033 0.062
missing) MixNChi -0.291 -0.307 0.205 -0.290 -0.296 -0.082 0.022 -0.147
3.Unconfounded Normal 0.069 0.064 0.164 0.083 0.047 0.038 0.035 0.086
(large values Dexp 0.065 0.059 0.160 0.084 0.049 0.059 0.036 0.079
more likely MixNorm 0.062 0.059 0.177 0.067 0.057 0.053 0.040 0.079
missing) MixNChi 0.000 -0.016 0.173 0.004 -0.003 -0.050 0.022 0.018
4. Unconfounded Normal 0.409 0.415 0.484 0.558 0.494 0.011 0.130 0.358
(Center values  Dexp 0.350 0.354 0.379 0.452 0.410 -0.006 0.113 0.306
more likely MixNorm 0.433 0.396 0.438 0.475 0.463 0.012 0.120 0.373
missing) MixNChi 0.569 0.477 0.482 0.752 0.571 -0.079 0.096 0.446
5. Confounded Normal -0.055 -0.064 0.342 0.046 -0.009 -0.248 -0.093 -0.029
(tail values Dexp -0.170 -0.172 0.326 -0.102 -0.093 -0.322 -0.187 -0.148
more likely MixNorm -0.156 -0.171 0.314 -0.021 -0.127 -0.328 -0.181 -0.126
missing) MixNChi -0.586 -0.584 0.105 -0.548 -0.561 -0.450 -0.491 -0.504

* “Qveral” meansthat the four missing rate categories are combined. Relative biases of variance estimates with five sets of imputations for each separate

missing rate category are reported in tables 5.2.3.2t0 5.2.3.5.
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Table 5.2.3.2—Relative bias of variance estimates with five sets of imputations with about 10% missing values”

Missing Proc
M echanism Distribution Random Mean +e Ratio +e ABB BB Impute Schafer Adj DA
1. MCAR Normal 0.098 0.129 0.137 0.074 0.010 0.031 0.104
Dexp 0.104 0.127 0.133 0.083 -0.009 0.014 0.109
MixNorm 0.147 0.110 0.139 0.125 0.004 0.035 0.147
MixNChi 0.097 0.113 0.116 0.190 -0.009 0.051 0.134
2. Unconfounded  Normal 0.063 0.035 0.227 0.053 0.026 0.026 0.033 0.085
(tail values Dexp -0.074 -0.069 0.163 -0.049 -0.084 -0.032 0.001 -0.045
more likely MixNorm -0.028 -0.040 0.209 -0.030 -0.054 0.001 0.025 0.008
missing) MixNChi -0.290 -0.328 0.172 -0.326 -0.324 -0.042 0.059 -0.207
3. Unconfounded  Normal 0.040 0.036 0.102 0.051 0.027 0.021 0.034 0.043
(large values Dexp -0.002 0.012 0.086 0.002 0.009 -0.010 0.007 0.002
more likely MixNorm 0.013 0.006 0.095 0.014 0.001 0.002 0.008 0.019
missing) MixNChi 0.043 0.003 0.171 -0.023 0.026 0.000 0.070 0.028
4. Unconfounded Normal 0.141 0.137 0.158 0.156 0.118 -0.017 0.025 0.141
(Center values  Dexp 0.157 0.149 0.149 0.163 0.145 0.009 0.051 0.146
more likely MixNorm 0.113 0.117 0.133 0.139 0.095 -0.030 0.025 0.112
missing) MixNChi 0.233 0.163 0.144 0.175 0.111 -0.076 -0.017 0.190
5. Confounded Normal -0.033 -0.054 0.115 -0.015 -0.050 -0.121 -0.047 -0.018
(tail values Dexp -0.081 -0.073 0.124 -0.073 -0.093 -0.163 -0.077 -0.072
more likely MixNorm -0.075 -0.050 0.075 -0.038 -0.071 -0.171 -0.100 -0.069
missing) MixNChi -0.397 -0.360 0.016 -0.368 -0.396 -0.257 -0.277 -0.366

* There are about 5% missing values for missing mechanism 3.



Table 5.2.3.3—Relative bias of variance estimates with five sets of imputations with about 20% missing values”

Missing Proc
M echanism Distribution Random Mean +e Ratio +e ABB BB Impute Schafer Adj DA
1. MCAR Normal 0.218 0.266 0.340 0.278 0.033 0.056 0.234
Dexp 0.316 0.285 0.317 0.265 0.016 0.093 0.320
MixNorm 0.204 0.234 0.221 0.207 -0.005 0.060 0.201
MixNChi 0.128 0.084 0.053 0.087 -0.002 -0.008 0.166
2. Unconfounded Normal 0.008 0.026 0.318 0.023 0.023 0.019 0.014 0.066
(tail values Dexp -0.044 -0.033 0.367 -0.005 -0.059 0.015 0.045 0.046
more likely MixNorm -0.026 0.051 0.368 0.063 -0.015 0.013 0.024 0.038
mi ssing) MixNChi -0.233 -0.278 0.345 -0.227 -0.214 -0.089 0.094 -0.068
3. Unconfounded Normal 0.026 0.024 0.134 0.024 0.011 0.002 0.007 0.043
(large values Dexp 0.083 0.062 0.179 0.095 0.053 0.043 0.054 0.094
more likely MixNorm 0.018 0.031 0.164 0.013 0.009 0.023 0.028 0.035
missing) MixNChi -0.112 -0.143 0.054 -0.112 -0.114 -0.148 -0.057 -0.086
4. Unconfounded Normal 0.374 0.323 0.399 0.431 0.343 0.013 0.114 0.339
(Center values  Dexp 0.283 0.300 0.326 0.346 0.264 0.012 0.112 0.260
more likely MixNom 0.297 0.328 0.333 0.360 0.336 0.015 0.090 0.278
missing) MixNChi 0.290 0.311 0.281 0.422 0.352 -0.045 0.072 0.240
5. Confounded Normal -0.009 -0.025 0.284 0.026 -0.046 -0.202 -0.072 0.014
(tail values Dexp -0.083 -0.119 0.243 -0.036 -0.068 -0.230 -0.115 -0.068
more likely MixNorm -0.115 -0.087 0.285 -0.045 -0.144 -0.260 -0.104 -0.092
mi ssing) MixNChi -0.602 -0.605 0.050 -0.569 -0.591 -0.492 -0.520 -0.517

* There are about 10% missing values for missing mechanism 3.



Table 5.2.3.4—Relative bias of variance estimates with five sets of imputations with about 30% missing values”

Missing Proc
M echanism Distribution Random Mean +e Ratio +e ABB BB Impute Schafer Adj DA
1. MCAR Normal 0.281 0.340 0.516 0.423 0.001 0.071 0.302
Dexp 0.367 0.361 0.642 0.512 0.039 0.101 0.363
MixNorm 0.358 0.394 0.537 0.329 -0.007 0.067 0.384
MixNChi 0.298 0.569 0.482 0.785 0.065 0.131 0.402
2. Unconfounded  Normal 0.076 0.036 0.408 0.158 0.054 0.121 0.037 0.167
(tail values Dexp -0.094 -0.096 0.443 -0.010 -0.041 0.014 0.049 0.051
more likely MixNorm -0.026 -0.085 0.439 -0.009 -0.054 -0.012 0.037 0.108
missing) MixNChi -0.318 -0.326 0.216 -0.271 -0.340 -0.012 0.006 -0.131
3. Unconfounded  Normal 0.089 0.094 0.204 0.123 0.088 0.044 0.061 0.108
(large values Dexp 0.067 0.070 0.189 0.092 0.053 0.114 0.048 0.082
more likely MixNorm 0.138 0.135 0.245 0.150 0.141 0.106 0.091 0.154
missing) MixNChi 0.005 -0.001 0.198 0.035 0.022 -0.032 0.023 0.043
4. Unconfounded Normal 0.481 0.509 0.570 0.772 0.683 0.019 0.163 0.414
(Center values  Dexp 0.506 0.430 0.475 0.502 0.500 0.001 0.142 0.448
more likely MixNorm 0.648 0.491 0.651 0.589 0.515 0.057 0.208 0.553
missing) MixNChi 0.597 0.526 0.614 0.897 0.575 -0.143 0.033 0.430
5. Confounded Normal -0.089 -0.082 0.375 0.115 -0.016 -0.287 -0.119 -0.048
(tail values Dexp -0.172 -0.205 0.402 -0.113 -0.093 -0.374 -0.211 -0.146
more likely MixNorm -0.237 -0.255 0.419 -0.038 -0.139 -0.405 -0.222 -0.216
missing) MixNChi -0.627 -0.643 0.111 -0.587 -0.598 -0.459 -0.549 -0.541

* There are about 15% missing values for missing mechanism 3.



Table 5.2.3.5—Relative bias of variance estimates with five sets of imputations with about 40% missing values”

Missing Proc
M echanism Distribution Random Mean +e Ratio +e ABB BB Impute Schafer Adj DA
1. MCAR Normal 0.418 0.353 0.844 0.683 0.026 0.102 0.481
Dexp 0.520 0.519 0.741 0.938 0.037 0.141 0.515
MixNorm 0.421 0.475 0.703 0.731 -0.006 0.073 0.426
MixNChi 0.691 0.515 0.920 1.167 -0.094 0.103 0.592
2. Unconfounded  Normal 0.094 0.088 0.503 0.171 0.155 0.208 0.034 0.170
(tail values Dexp -0.142 -0.146 0.401 0.008 -0.053 0.005 -0.032 -0.015
more likely MixNorm -0.023 0.009 0.418 0.074 0.040 0.039 0.048 0.093
missing) MixNChi -0.323 -0.297 0.088 -0.336 -0.308 -0.187 -0.071 -0.182
3. Unconfounded  Normal 0.119 0.104 0.215 0.133 0.063 0.086 0.037 0.148
(large values Dexp 0.112 0.090 0.185 0.147 0.081 0.091 0.036 0.138
more likely MixNorm 0.081 0.062 0.203 0.092 0.077 0.081 0.032 0.110
missing) MixNChi 0.063 0.077 0.268 0.116 0.053 -0.018 0.053 0.087
4. Unconfounded Normal 0.641 0.692 0.810 0.871 0.833 0.029 0.218 0.538
(Center values  Dexp 0.451 0.537 0.567 0.798 0.732 -0.043 0.148 0.370
more likely MixNorm 0.675 0.650 0.633 0.811 0.907 0.008 0.156 0.548
missing) MixNChi 1.155 0.906 0.889 1515 1.247 -0.052 0.294 0.926
5. Confounded Normal -0.089 -0.093 0.596 0.060 0.076 -0.383 -0.135 -0.063
(tail values Dexp -0.346 -0.291 0.533 -0.187 -0.119 -0.518 -0.347 -0.306
more likely MixNorm -0.197 -0.292 0.477 0.036 -0.157 -0.475 -0.299 -0.126
missing) MixNChi -0.718 -0.728 0.241 -0.668 -0.657 -0.592 -0.618 -0.592

* There are about 20% missing values for missing mechanism 3.



524  Coveragerates

The coverage rate is defined as the ratio of the number of smulation replicationsin which the
confidence interval estimates cover the true vaue to the total number of smulation replications.
Tables 5.2.4.1-5.2.4.5 report the coverage rates of the 95 percent confidence interval
edtimates covering the true means for the combined missing category and separate missing

categories, respectively.

Schafer’ s software obvioudy has the best coverage rates. It has dmost perfect rates acrossthe
five missing mechanisms for dl missng rate categories. The adjusted data augmentation method
also has dmogt perfect coverage rates for dl missng rate categories and dl missng mechanisms
except mechanism (3). This method has fairly low coverage rates for this missng mechanism
when missing rates are higher than 20 percent. The reason isthat this method subgtantialy
underestimated the true mean for this missing mechanism. It seems that imputation methods
based on Bayesian theory give better coverage rates under smilar conditions, which concurs
with Rubin’s point of view.

Ratio and ratio with disturbance imputation methods have greet coverage rates for missing
mechaniams (2), (3), and (5) when tall values or large values are missing a higher probahilities.
Although the two methods are not as good for missing mechanism (4) when the incomplete data
are more diversfied than the true didtribution, they are till acceptable when missing rates are
lower than 30 percent. With 40 percent missing vaues, the coverage rates of the two ratio
imputation methods are moderately low (from 78 percent for mixed distribution of norma and
Chi-sguare and 90 percent for the normal distribution). Thisis because the two methods
sgnificantly overestimate the mean for this missng mechaniam, as shown in our bias andyses.

PROC IMPUTE has very good coverage rates except for missng mechanism (5). Some rates
are low for mechanism (5) when missing rates are higher than 25 percent. The sequentid hot
deck method is significantly worse than PROC IMPUTE in terms of coveragerates, but it is
better than the other methods which do not use any auxiliary information, especialy for missng
mechanism (3). Not much difference has been found among the mean imputation, random
imputation, mean with disturbance imputation, ABB, and BB methods. The coverage rates of
these methods are too low, especidly for missng mechanisms (3) and (5), when missing rates
are higher than 20 percent.
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Table 5.2.4.1—Coverage rates with singleimputation (overall ")

Missing Mean Ratio Hot Proc Adj.
M echanism Distribution | Incomp Imp. Imp. Deck Random Mean+e Ratio+e ABB BB Impute  Schafer DA
1. MCAR Normal 89.0% | 84.5% 93.5% 87.5% 86.5% 85.5% 855% 92.0%  96.0% 93.5%
Dexp 92.0% | 85.0% 87.5% 88.5% 88.0% 845% 86.0% 93.0% 945% 94.5%

MixNorm 89.5% | 85.0% 91.5% 89.5% 85.0% 84.0% 87.0% 93.0%  95.0% 95.5%

MixNChi 89.5% | 84.0% 87.0% 88.5% 87.5% 86.5% 86.0% 925%  94.5% 95.5%

2. Unconfounded  Normal 94.0% | 89.5% 96.5% 92.0% 92.0% 89.0% 95.0% 96.0% 93.0% 93.5%  96.5% 96.5%
(tail values Dexp 95.5% | 94.0% 96.5% 88.5% 92.0% 93.5% 96.5% 91.5% 945% 96.0% 97.0% 97.0%
more likely MixNorm 89.5% | 84.5% 94.5% 85.5% 87.5% 88.0% 96.0% 84.5% 87.0% 94.0%  95.0% 92.5%
missing) MixNChi 90.5% | 87.5% 94.0% 88.5% 90.0% 89.0% 935% 885% 91.0% 90.5%  93.5% 97.0%
3. Unconfounded  Normal 83.5% | 80.5% 94.5% 93.5% 81.5% 79.5% 945% 81.0% 815% 95.0%  96.5% 87.0%
(large values Dexp 83.5% | 82.0% 94.5% 92.0% 80.5% 81.0% 93.0% 80.5% 825% 92.0%  94.0% 85.5%
more likely MixNorm 79.5% [ 76.0% 92.0% 91.0% 80.0% 77.0% 935% 80.0% 76.5% 93.0% 94.0% 82.5%
missing) MixNChi 83.5% | 82.0% 93.0% 91.5% 83.0% 84.0% 94.0% 835% 815% 935% 96.5% 89.0%

4. Unconfounded Normal 92.5% | 88.0% 91.5% 88.5% 90.5% 89.0% 91.5% 89.0% 90.5% 94.0%  97.0% 96.5%
(Center values  Dexp 93.5% | 88.5% 91.0% 86.0% 90.0% 90.0% 935% 89.5% 90.5% 90.0%  93.5% 95.0%
more likely MixNorm 92.0% | 88.5% 92.0% 85.5% 88.5% 87.0% 935% 88.0% 89.0% 90.0%  96.5% 96.5%
missing) MixNChi 90.0% | 86.0% 89.5% 88.0% 89.0% 86.5% 87.0% 875% 91.0% 92.0%  94.0% 95.5%

5. Confounded Normal 92.5% | 87.0% 95.0% 89.0% 91.5% 87.5% 925% 90.0% 86.0% 91.0%  955% 96.0%
(tail values Dexp 90.0% | 84.0% 96.0% 91.0% 89.0% 84.5% 94.0% 875% 88.0% 885% 955% 98.0%
more likely MixNorm 91.5% | 84.5% 955% 85.0% 88.5% 88.0% 955% 85.0% 86.0% 84.0%  945% 96.0%
missing) MixNChi 815% | 745% 96.0% 81.0% 75.0% 81.0% 95.0% 74.0% 77.0% 85.0%  95.0% 90.5%

* “Qverall” means that the four missing rate categories are combined. Coverage rates for each separate missing rate category arereported in tables 5.2.4.1 to

5245.
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Table 5.2.4.2—Cover age rates with single imputation with about 10% missing values’

Missing Mean Ratio Hot Proc Adj.
M echanism Distribution | Incomp Imp. Imp. Deck Random Mean+e Ratio+e ABB BB Impute  Schafer DA
1. MCAR Normal 92.0% | 92.0% 94.0% 88.0% 92.0% 92.0% 90.0% 92.0%  94.0% 92.0%
Dexp 96.0% | 96.0% 96.0% 94.0% 94.0% 92.0% 94.0% 96.0%  96.0% 98.0%

MixNorm 92.0% | 90.0% 94.0% 92.0% 92.0% 88.0% 90.0% 94.0%  96.0% 98.0%

MixNChi 96.0% | 92.0% 92.0% 92.0% 94.0% 92.0% 96.0% 92.0%  90.0% 94.0%

2. Unconfounded  Normal 92.0% | 90.0% 94.0% 92.0% 94.0% 94.0% 94.0% 98.0% 92.0% 92.0%  94.0% 96.0%
(tail values Dexp 98.0% | 98.0% 96.0%  100% 88.0% 94.0% 98.0% 96.0% 98.0% 96.0%  98.0% 92.0%
more likely MixNorm 88.0% | 84.0% 94.0% 86.0% 90.0% 86.0% 98.0% 80.0% 88.0% 90.0%  96.0% 90.0%
missing) MixNChi 92.0% | 90.0% 92.0% 90.0% 92.0% 94.0% 92.0% 90.0% 98.0% 92.0%  94.0% 96.0%
3. Unconfounded  Normal 94.0% | 94.0% 96.0% 98.0% 94.0% 94.0% 96.0% 92.0% 92.0% 94.0%  96.0% 94.0%
(large values Dexp 92.0% | 90.0% 96.0% 94.0% 88.0% 88.0% 96.0% 92.0% 90.0% 94.0%  96.0% 92.0%
more likely MixNorm 92.0% | 92.0% 94.0% 96.0% 94.0% 92.0% 96.0% 92.0% 92.0% 96.0%  96.0% 96.0%
missing) MixNChi 90.0% | 86.0% 96.0% 96.0% 90.0% 88.0% 96.0% 88.0% 86.0% 94.0%  96.0% 94.0%

4. Unconfounded Normal 96.0% | 96.0% 98.0% 96.0% 96.0% 96.0% 96.0% 96.0% 94.0% 98.0%  98.0% 98.0%
(Center values  Dexp 100% | 100%  100% 98.0% 100% 94.0% 100%  100%  100%  100% 100%  100%
more likely MixNorm 94.0% | 94.0% 96.0% 94.0% 92.0% 90.0% 94.0% 90.0% 96.0% 94.0%  94.0% 96.0%
missing) MixNChi 92.0% | 90.0% 94.0% 90.0% 90.0% 90.0% 90.0% 90.0% 92.0% 94.0%  94.0% 94.0%

5. Confounded Normal 92.0% | 88.0% 92.0% 92.0% 88.0% 92.0% 92.0% 92.0% 88.0% 90.0%  92.0% 88.0%
(tail values Dexp 92.0% | 90.0% 92.0% 92.0% 92.0% 86.0% 92.0% 92.0% 90.0% 92.0%  92.0% 96.0%
more likely MixNorm 94.0% | 94.0% 98.0% 96.0% 96.0% 94.0% 98.0% 92.0% 92.0% 98.0%  96.0% 96.0%
missing) MixNChi 88.0% | 86.0% 98.0% 92.0% 90.0% 88.0% 98.0% 88.0% 86.0% 92.0%  96.0% 92.0%

* There are about 5% missing values for missing mechanism 3.
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Table 5.2.4.3—Coverage rates with single imputation with about 20% missing values’

Missing Mean Ratio Hot Proc Adj.
M echanism Distribution | Incomp Imp. Imp. Deck Random Mean+e Ratio+e ABB BB Impute  Schafer DA
1. MCAR Normal 88.0% | 86.0% 98.0% 90.0% 86.0% 88.0% 86.0% 92.0%  94.0% 96.0%
Dexp 90.0% | 86.0% 88.0% 90.0% 88.0% 86.0% 88.0% 92.0%  90.0% 92.0%

MixNorm 96.0% | 88.0% 96.0% 94.0% 88.0% 88.0% 88.0% 96.0%  98.0% 96.0%

MixNChi 98.0% | 94.0% 98.0% 98.0% 92.0% 98.0% 94.0%  100% 100%  98.0%

2. Unconfounded  Normal 98.0% | 96.0% 98.0% 94.0% 96.0% 94.0% 98.0% 94.0% 96.0% 98.0%  96.0%  100%
(tail values Dexp 94.0% | 94.0% 94.0% 92.0% 94.0% 94.0% 94.0% 90.0% 94.0% 92.0%  94.0% 96.0%
more likely MixNorm 98.0% | 96.0% 98.0% 94.0% 96.0% 98.0% 98.0% 96.0% 96.0% 98.0%  96.0% 96.0%
missing) MixNChi 94.0% | 90.0%  100% 84.0% 92.0% 92.0%  100.0% 94.0% 92.0% 96.0%  98.0% 96.0%
3. Unconfounded  Normal 94.0% | 94.0% 98.0% 98.0% 92.0% 84.0% 98.0% 92.0% 90.0% 98.0%  98.0% 96.0%
(large values Dexp 82.0% | 82.0% 92.0% 86.0% 82.0% 80.0% 90.0% 80.0% 84.0% 88.0%  88.0% 84.0%
more likely MixNorm 82.0% | 78.0% 94.0% 96.0% 80.0% 76.0% 94.0% 84.0% 78.0% 96.0%  96.0% 82.0%
missing) MixNChi 84.0% | 84.0% 94.0% 94.0% 88.0% 88.0% 98.0% 88.0% 86.0% 94.0% 100.0% 92.0%

4. Unconfounded Normal 92.0% | 90.0% 92.0% 88.0% 88.0% 94.0% 94.0% 92.0% 92.0% 92.0%  96.0% 96.0%
(Center values  Dexp 90.0% | 86.0% 88.0% 86.0% 84.0% 88.0% 90.0% 88.0% 86.0% 88.0%  94.0% 90.0%
more likely MixNorm 92.0% | 92.0% 96.0% 94.0% 88.0% 92.0% 98.0% 90.0% 92.0% 94.0%  98.0% 98.0%
missing) MixNChi 88.0% | 88.0% 94.0% 88.0% 90.0% 88.0% 92.0% 92.0% 90.0% 88.0%  96.0% 96.0%

5. Confounded Normal 98.0% | 92.0% 98.0% 92.0% 96.0% 90.0% 94.0% 90.0% 92.0% 96.0%  98.0%  100%
(tail values Dexp 98.0% | 94.0% 98.0% 90.0% 96.0% 96.0% 94.0% 98.0% 94.0% 92.0%  96.0%  100%
more likely MixNorm 100% | 96.0% 98.0% 88.0% 100% 94.0% 96.0% 92.0% 98.0% 90.0%  98.0%  100%
missing) MixNChi 82.0% | 76.0% 94.0% 78.0% 72.0% 82.0% 94.0% 72.0% 80.0% 86.0%  96.0% 88.0%

* There are about 10% missing values for missing mechanism 3.



Table 5.2.4.4—Coverage rates with single imputation with about 30% missing values’

Missing Mean Ratio Hot Proc Adj.
M echanism Distribution | Incomp Imp. Imp. Deck Random Mean+e Ratio+e ABB BB Impute  Schafer DA
1. MCAR Normal 84.0% | 80.0% 88.0% 86.0% 80.0% 82.0% 86.0% 96.0%  98.0% 94.0%
Dexp 88.0% | 74.0% 84.0% 84.0% 84.0% 78.0% 82.0% 88.0%  96.0% 92.0%

MixNorm 80.0% | 76.0% 86.0% 82.0% 74.0% 76.0% 90.0% 88.0%  92.0% 90.0%

MixNChi 86.0% | 82.0% 82.0% 78.0% 80.0% 82.0% 84.0% 88.0% 94.0% 96.0%

2. Unconfounded  Normal 96.0% | 90.0% 98.0% 96.0% 92.0% 86.0% 98.0% 98.0% 94.0% 94.0%  98.0% 96.0%
(tail values Dexp 98.0% | 98.0%  100% 88.0% 96.0% 96.0% 98.0% 94.0% 98.0% 98.0%  98.0%  100%
more likely MixNorm 90.0% | 82.0% 94.0% 90.0% 84.0% 88.0% 94.0% 86.0% 86.0% 90.0%  94.0% 90.0%
missing) MixNChi 86.0% | 84.0% 88.0% 94.0% 90.0% 84.0% 90.0% 86.0% 86.0% 84.0%  86.0%  100%

3. Unconfounded  Normal 82.0% | 80.0% 90.0% 90.0% 82.0% 80.0% 92.0% 82.0% 80.0% 94.0%  96.0% 84.0%
(large values Dexp 84.0% | 82.0% 94.0% 92.0% 80.0% 82.0% 96.0% 84.0% 82.0% 94.0%  96.0% 84.0%
more likely MixNorm 74.0% | 70.0% 84.0% 80.0% 72.0% 68.0% 88.0% 72.0% 68.0% 88.0% 90.0% 74.0%
missing) MixNChi 82.0% | 82.0% 88.0% 84.0% 78.0% 82.0% 88.0% 82.0% 82.0% 92.0% 92.0% 84.0%

4. Unconfounded Normal 92.0% | 82.0% 90.0% 90.0% 88.0% 84.0% 88.0% 86.0% 88.0% 96.0% 100.0% 96.0%
(Center values  Dexp 90.0% | 86.0% 86.0% 84.0% 88.0% 92.0% 92.0% 86.0% 92.0% 88.0%  88.0% 94.0%
more likely MixNorm 90.0% | 82.0% 90.0% 74.0% 84.0% 80.0% 94.0% 86.0% 84.0% 94.0%  94.0% 94.0%
missing) MixNChi 92.0% | 88.0% 92.0% 92.0% 90.0% 86.0% 86.0% 84.0% 92.0% 94.0%  90.0% 94.0%

5. Confounded Normal 90.0% | 88.0% 92.0% 82.0% 90.0% 84.0% 90.0% 90.0% 84.0% 88.0%  96.0% 96.0%
(tail values Dexp 86.0% | 80.0% 96.0% 92.0% 86.0% 84.0% 92.0% 82.0% 88.0% 86.0%  96.0% 96.0%
more likely MixNorm 86.0% | 76.0% 96.0% 76.0% 80.0% 82.0% 96.0% 76.0% 74.0% 70.0% 88.0% 92.0%
missing) MixNChi 78.0% | 74.0% 94.0% 80.0% 72.0% 80.0% 92.0% 70.0% 68.0% 86.0%  94.0% 92.0%

* There are about 15% missing values for missing mechanism 3.
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Table 5.2.4.5—Coverage rates with single imputation with about 40% missing values’

Missing Mean Ratio Hot Proc Adj.
M echanism Distribution | Incomp Imp. Imp. Deck Random Mean+e Ratio+e ABB BB Impute  Schafer DA
1. MCAR Normal 92.0% | 80.0% 94.0% 86.0% 88.0% 80.0% 80.0% 88.0%  98.0% 92.0%
Dexp 94.0% | 84.0% 82.0% 86.0% 86.0% 82.0% 80.0% 96.0%  96.0% 96.0%

MixNorm 90.0% | 86.0% 90.0% 90.0% 86.0% 84.0% 80.0% 94.0%  94.0% 98.0%

MixNChi 78.0% | 68.0% 76.0% 86.0% 84.0% 74.0% 70.0% 90.0%  94.0% 94.0%

2. Unconfounded  Normal 90.0% | 82.0% 96.0% 86.0% 86.0% 82.0% 90.0% 94.0% 90.0% 90.0%  98.0% 94.0%
(tail values Dexp 92.0% | 86.0% 96.0% 74.0% 90.0% 90.0% 96.0% 86.0% 88.0% 98.0%  98.0%  100%
more likely MixNorm 82.0% | 76.0% 92.0% 72.0% 80.0% 80.0% 94.0% 76.0% 78.0% 98.0%  94.0% 94.0%
missing) MixNChi 90.0% | 86.0% 96.0% 86.0% 86.0% 86.0% 92.0% 84.0% 88.0% 90.0%  96.0% 96.0%
3. Unconfounded  Normal 64.0% [ 54.0% 94.0% 88.0% 58.0% 60.0% 92.0% 58.0% 64.0% 94.0%  96.0% 74.0%
(large values Dexp 76.0% [ 74.0% 96.0% 96.0% 72.0% 74.0% 90.0% 66.0% 74.0% 92.0%  96.0% 82.0%
more likely MixNorm 70.0% | 64.0% 96.0% 92.0% 74.0% 72.0% 96.0% 72.0% 68.0% 92.0%  94.0% 78.0%
missing) MixNChi 78.0% | 76.0% 94.0% 92.0% 76.0% 78.0% 94.0% 76.0% 72.0% 94.0%  98.0% 86.0%

4. Unconfounded Normal 90.0% | 84.0% 86.0% 80.0% 90.0% 82.0% 88.0% 82.0% 88.0% 90.0%  94.0% 96.0%
(Center values  Dexp 94.0% | 82.0% 90.0% 76.0% 88.0% 86.0% 92.0% 84.0% 84.0% 84.0%  92.0% 96.0%
more likely MixNorm 92.0% | 86.0% 86.0% 80.0% 90.0% 86.0% 88.0% 86.0% 84.0% 78.0% 100.0% 98.0%
missing) MixNChi 88.0% | 78.0% 78.0% 82.0% 86.0% 82.0% 80.0% 84.0% 90.0% 92.0%  96.0% 98.0%

5. Confounded Normal 90.0% | 80.0% 98.0% 90.0% 92.0% 84.0% 94.0% 88.0% 80.0% 90.0%  96.0%  100%
(tail values Dexp 84.0% | 72.0% 98.0% 90.0% 82.0% 72.0% 98.0% 78.0% 80.0% 84.0%  98.0%  100%
more likely MixNorm 86.0% | 72.0% 90.0% 80.0% 78.0% 82.0% 92.0% 80.0% 80.0% 78.0%  96.0% 96.0%
missing) MixNChi 78.0% | 62.0% 98.0% 74.0% 66.0% 74.0% 96.0% 66.0% 74.0% 76.0%  94.0% 90.0%

* There are about 20% missing values for missing mechanism 3.
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525  Confidenceinterva width

A 95 percent confidence interva width was obtained via the distribution of the 200 mean
estimates based on the 200 smulation replications. The lower confidence limit was equa to the
average of the fifth and sixth smallest estimates, and the upper corfidence limit was equd to the
average of thefifth and sixth largest estimates. Shorter confidence interva aone does not
necessaily imply a better method. A method which provides shorter confidence intervals with
higher coverage rates is generdly preferred because the method is more likely to provide more
concentrated point estimates around the true values.

Table 5.2.5.1 presents the confidence interval widths for the estimates based on the complete
data and the data imputed by the 11 imputation methods. For missing mechanisms (2), (3), and
(5), tail vduesor large vaues are more likdy missng and the incomplete data are less diversified
than the true distribution, and so are the imputed data. Therefore, the estimates based on the
imputed data tend to have less variation than the complete data, and consequently the
confidence intervals tend to be too short. This tendency can especidly be seen in missing
mechanism (5). The readers may need to compare the methods in terms of confidence interva
widths along with the biases of variance estimates discussed in section 5.2.2 and coverage rates
described in section 5.2.4.

On the other hand, for missing mechanism (4), the incomplete data are more diversified than the
complete data, and therefore the estimates based on the imputed data tend to have more
variation. Consequently, the confidence intervals based on the imputed data tend to be too
wide.

Overdl, Schafer’ s software and the adjusted data augmentation method have the shortest
confidence intervas across the five missing mechanism. We dso found in the preceding section
that these two methods aso gave the best coverage rates except for missing mechanism (3) with
the adjusted data augmentation method. Therefore, the two methods are least likely to provide
bad egtimates. The other methods seem not to have substantial advantage over each other in
terms of confidence interva width.



Table 5.2.5.1—Confidence interval width with single imputation (overall )

Missing Mean Ratio Hot Proc Adj.
M echanism Distribution Comp. Imp. Imp. Deck Random Mean+e Ratio+e ABB BB Impute  Schafer DA
1. MCAR Normal 0.375| 0.453 0.417 0.496 0.518 0.491 0488 0.466 0.390 0.393
Dexp 0.564 | 0.629 0.689 0.610 0.713 0.681 0.685 0.598 0.557  0.497

MixNorm 0.429 | 0.494 0.532 0.598 0.618 0.634 0585 0478 0.428 0.481

MixNChi 0.797 | 1.015 1.504 1.179 1.094 1134 1289 0.847 0.841  0.959

2. Unconfounded  Normal 0.369 | 0.383 0.374 0441 0.425 0.419 0.415 0.355 0.402 0.437 0.364  0.358
(tail values Dexp 0513 | 0463 0545 0.635 0.494 0.490 0.550 0495 0472 0.530 0.496  0.444
more likely MixNorm 0.425| 0.481 0.459 0.618 0.515 0.507 0.515 0.544 0.538 0.465 0.447 0.444
missing) MixNChi 0.884 | 0.658 0.878 1.122 0.801 0.729 0953 0.720 0.766 0.834 0.878 0.722
3. Unconfounded  Normal 0.362 | 0.434 0.394 0.423 0.477 0.447 0.448 0.446 0431 0.395 0.377 0.422
(large values Dexp 0543 | 0567 0572 0.550 0.589 0.545 0571 0.663 0.588 0.643 0.562 0.546
more likely MixNorm 0.483 | 0.527 0.532 0.493 0.525 0.550 0543 0567 0510 0.519 0.488  0.465
missing) MixNChi 0.846 | 0.781 0.866 0.805 0.877 0.848 0.870 0.832 0.846 0.895 0.770  0.825

4. Unconfounded Normal 0.376 | 0.443 0.402 0.519 0.507 0.499 0.438 0549 0517 0.408 0.360 0.377
(Center values  Dexp 0521 | 0.707 0.632 0.762 0.727 0.720 0.616 0.688 0.783 0.584 0.582 0.562
more likely MixNorm 0.472 | 0554 049 0.617 0.612 0.600 0523 0.601 0.622 0.564 0.436 0.474
missing) MixNChi 0.893 | 1.118 0.997 1.130 1.114 1.310 1123 1324 1026 0974 0.919 0.936

5. Confounded Normal 0411 | 0379 0.361 0.395 0.377 0.407 0.441 0.418 0.424 0.355 0.312 0.283
(tail values Dexp 0559 | 0460 0.469 0.552 0.501 0.495 0.565 0.483 0.547 0.547 0.446  0.381
more likely MixNorm 0.468 | 0.432 0.388 0.512 0.436 0.473 0.450 0529 0492 0429 0.376  0.353
missing) MixNChi 0.765| 0.627 0.677 0.678 0.685 0.658 0.769 0.698 0.637 0.773 0.622  0.578

* “Overal” means that the four missing rate categories are combined.
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5.2.6  Biasof quartile estimates

We obtained estimates of median and the first and third quartiles for al imputed data to
investigate how imputation affects the data distribution. Tables 5.2.6.1-5.2.6.3 give the biases
of the first quartile, the third quartile, and the median estimates, respectively, for the combined
missing rate categories.

The mean imputation method is obvioudy the worgt in terms of quartile estimates across dl five
missing mechaniams. The data are centrdized so that the first quartiles are subgtantidly
overestimated, while the third quartiles are substantially underestimated. The median estimates
are pretty much amilar to those of the incomplete data. The only exceptions are the first quartile
edimates for missing mechanism (3) in which the positive biases are very small. Thisis because
both missing vaues created via missing mechanism (3) and the meansimputed for the missing
vaues are larger than the first quartiles so that the first quartile estimates based on the imputed
data are very close to those based on the complete data. We will not include this method for
discussion in this section.

For the MCAR missing mechanism, al methods except the mean and the mean with disturbance
imputation methods give fine esimates for dl the quartiles. The mean with disturbance
imputation method gives fine estimates for the norma and the contaminated norma didtributions,
but it has sgnificantly larger negative biases of the firgt quartile estimates and sgnificantly larger
positive biases of the third quartile estimates for the double exponentid distribution and the
mixed digribution of norma and Chi-square. Thisimplies that the disturbance drawn from

N (0,<,.) diversified the true data, where <, is calculated from the observed data from the

double exponentid distribution or the mixed didtribution of norma and Chi-square.

For unconfounded missing mechanism (2), since the incomplete data are less diversfied than the
true digtributions, the first quartiles are overestimated while the third quartiles are
underestimated. Five methods—Schafer’ s software, PROC IMPUTE, hot deck, ratio and ratio
with disturbance imputation—all substantidly reduce the biases of the first and third quartile
estimates compared to the incomplete data. The adjusted data augmentation method has dight
improvement for the third quartile estimates, but no improvement for the biases of the first
quartile estimates. The random, mean with disturbance, ABB, and BB imputation methods do
not improve the first and second quartile estimates compared to the incomplete data. For this
missing mechanism, al methods provide fine median estimates because vaues are missng
symmetricaly a both talls.

For unconfounded missing mechanism (3), since the incomplete data are less diversfied than the
true digtributions, the first quartiles are overestimated while the third quartiles are underestimated
by the incomplete data. Smilar results to those for mechanism (2) have been found for the first
and third quartile estimates. The biases of these quartile estimates based on the dataimputed by
Schafer’ s software, ratio imputation, ratio with disturbance imputation, PROC IMPUTE, and
hot deck are at least twice smdler than those based on the incomplete data. Among these five
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methods, hot deck is obvioudy worse than Schafer’ s software, PROC IMPUTE, and theratio
imputation method. All other methods except the mean imputation method have some
improvement over the incomplete data but it is not subgtantial. For this missng mechanism, the
medians are underestimated by the incomplete data. Schafer’ s software and PROC IMPUTE
reduce the negative biases by 4 to 50 times, while hot deck, ratio imputation, ratio with
disturbance imputation reduce the negetive biases by 2 to 10 times. All other methods reduce
the biases of the incomplete data median estimates dightly.

For unconfounded missing mechanism (4), snce the incomplete data are more diversfied than
the true digtribution, the first quartiles are underestimated while the third quartiles are
overestimated by the incomplete data. The hot deck method has the best overall performancein
terms of biases of quartile estimates, followed by PROC IMPUTE and Schafer’ s software.
Among these three methods, Schafer’ s software is best for normd distribution, but much worse
than hot deck and PROC IMPUTE for the mixed distribution of norma and Chi-square. The
other methods do not improve the biases over the incomplete data. Although the ratio
imputation method shrinks the diversified incomplete deta, the imputed data are shrunk too
much so that they have less variation than the true distribution. The magnitudes of the biases of
the first quartile estimates are larger than those of the incomplete data, but it is the other way
around for the third quartile estimates. On the other hand, the random imputation, ABB, BB,
and adjusted data augmentation methods have dightly better first quartile estimates but dightly
worse third quartile estimates in terms of bias. All methods except ratio imputation and ratio
with disturbance imputation provide as good median estimates as the incomplete data. Ratio
imputation and ratio with disturbance imputation worsen the median estimates compared to the
incomplete data.

For confounded missing mechanism (5), since the incomplete data are less diversified than the
true distributions, the first quartiles are overestimated while the third quartiles are underestimated
by the incomplete data. The ratio with disturbance imputation method obvioudy has the best
performance and reduces the biases of the incomplete quartile estimates by two to Six times.
Ratio imputation and Schafer’ s software aso improve the quartile estimates over the incomplete
data. The other methods dightly worsen the first quartile estimates while dightly improving the
third quartile estimates. All methods give fine median estimates with this missing mechanism.



Table 5.2.6.1—Biases of thefirst quartile estimates (overall )

Missing Mean Ratio Hot Proc Adj.
M echanism Distribution | Incomp Imp. Imp. Deck Random Mean+e Ratio+e ABB BB Impute  Schafer DA
1. MCAR Normal -0.020 | 0.251 0.038 -0.001 -0.006 0.007 -0.004 -0.016 -0.013 0.001
Dexp -0.022 | 0.289 0.028 -0.004 -0.062 -0.004 -0.010 0.004 -0.045 -0.007

MixNorm -0.015| 0.271 0.033 -0.003 -0.012 0.007 0.004 0.004 -0.015 -0.011

MixNChi -0.019 | 0.290 0.044 -0.003 -0.084 0.002 0.008 0.049 -0.058 -0.027

2. Unconfounded Normal 0.054| 0.221 -0.027 -0.014 0.066 0.066 -0.019 0.068 0.056 -0.034 -0.008 0.054
(tail values Dexp 0.079 | 0.272 -0.017 0.003 0.094 0.074 -0.015 0.092 0.092 -0.001 -0.002 0.076
more likely MixNorm 0.058 | 0.247 -0.015 -0.003 0.071 0.061 -0.004 0.072 0.072 -0.004 -0.001 0.059
missing) MixNChi 0.064 | 0.245 -0.018 0.022 0.082 0.033 -0.016 0.076 0.086 0.021 0.003  0.047
3. Unconfounded  Normal -0.082 | 0.005 0.005 -0.008 -0.066 -0.073 -0.021 -0.068 -0.074 0.001 0.000 -0.060
(large values Dexp -0.096 | 0.015 0.015 -0.013 -0.080 -0.097 -0.018 -0.084 -0.077 0.006 0.003 -0.073
more likely MixNorm -0.096 | 0.008 0.008 -0.009 -0.088 -0.085 -0.022 -0.083 -0.079 0.002 0.001 -0.082
missing) MixNChi -0.103 | 0.009 0.009 -0.020 -0.087 -0.123 -0.051 -0.085 -0.086 -0.011 -0.022 -0.084

4. Unconfounded Normal -0.061| 0.209 0.123 0.008 -0.039 -0.038 -0.031 -0.044 -0.046 0.036 0.001 -0.033
(Center values  Dexp -0.113| 0.173 0.118 -0.024 -0.091 -0.099 -0.082 -0.083 -0.092 0.017 -0.032 -0.085
more likely MixNorm -0.075| 0.193 0.111 0.006 -0.064 -0.065 -0.062 -0.061 -0.056 0.023 -0.024 -0.056
missing) MixNChi -0.146 | 0.238 0.138 -0.014 -0.118 -0.207 -0.197 -0.121 -0.121 0.049 -0.137 -0.112

5. Confounded Normal 0.111| 0.331 0.096 0.120 0.131 0.116 0.045 0.115 0.123 0.142 0.111 0.121
(tail values Dexp 0.175| 0.463 0.143 0.173 0.201 0.177 0.061 0.190 0.189 0.203 0.153 0.191
more likely MixNorm 0.129 | 0.388 0.096 0.137 0.140 0.127 0.033 0.146 0.150 0.157 0.103  0.135
missing) MixNChi 0.173| 0.467 0.124 0.189 0.206 0.162 0.021 0.192 0.197 0.135 0.143 0.172

* “Overall” meansthat the four missing rate categories are combined. The results for each separate missing rate category are reported in tables 5.2.6.2t0 5.2.6.3.



Table 5.2.6.2—Biases of the third quartile estimates (overall ")

Missing Mean Ratio Hot Proc Adj.
M echanism Distribution | Incomp Imp. Imp. Deck Random Mean+e Ratio+e ABB BB Impute  Schafer DA
1. MCAR Normal -0.023 | -0.273 -0.008 -0.010 -0.019 -0.004 -0.011 0.012 -0.005 -0.007
Dexp -0.016 | -0.287 -0.018 0.014 0.063 0.003 -0.001 -0.002 0.043  0.023

MixNorm -0.017 | -0.274 -0.013 -0.006 0.021 -0.002 -0.011 -0.018 0.004 -0.001

MixNChi -0.010 | -0.254 -0.001 0.013 0.109 0.014 0.019 0.008 0.061  0.058

2. Unconfounded  Normal -0.066 | -0.207 0.015 -0.005 -0.050 -0.055 0.000 -0.054 -0.047 0.018 0.002 -0.043
(tail values Dexp -0.109 | -0.265 0.011 0.001 -0.090 -0.072 0.006 -0.089 -0.093 -0.006 -0.005 -0.071
more likely MixNorm -0.070 | -0.222  0.017 0.012 -0.061 -0.050 0.020 -0.065 -0.057 0.007 -0.004 -0.045
missing) MixNChi -0.081 | -0.223 -0.004 0.023 -0.068 -0.018 0.007 -0.062 -0.068 -0.033 -0.005 -0.028
3. Unconfounded  Normal -0.130 | -0.193 0.003 -0.027 -0.119 -0.115 -0.003 -0.119 -0.118 0.017 0.004 -0.105
(large values Dexp -0.174| -0.262 -0.007 -0.031 -0.157 -0.145 -0.010 -0.158 -0.156 0.024 0.001 -0.140
more likely MixNorm -0.146 | -0.219 -0.008 -0.022 -0.137 -0.134 0.002 -0.138 -0.125 0.017 -0.001 -0.120
missing) MixNChi -0.145 | -0.216 -0.010 -0.036 -0.135 -0.101 -0.018 -0.126 -0.128 -0.018 -0.014 -0.108

4. Unconfounded Normal 0.067 | -0.180 -0.057  0.009 0.081 0.071 0.102 0.086 0.081 -0.044 0.008 0.072
(Center values  Dexp 0.062 | -0.196 -0.091 -0.004 0.070 0.102 0.136 0.090 0.080 -0.060 0.018 0.057
more likely MixNorm 0.068 | -0.173 -0.060  0.009 0.084 0.095 0.135 0.105 0.103 -0.035 0.019 0.077
missing) MixNChi 0.077 | -0.221 -0.028 0.014 0.106 0.250 0.266 0.105 0.102 -0.039 0.135 0.108

5. Confounded Normal -0.151 | -0.340 -0.091 -0.122 -0.141 -0.129 -0.037 -0.139 -0.131 -0.158 -0.116 -0.139
(tail values Dexp -0.197 | -0.448 -0.107 -0.150 -0.179 -0.166 -0.030 -0.174 -0.178 -0.185 -0.139 -0.171
more likely MixNorm -0.163 | -0.407 -0.102 -0.132 -0.145 -0.141 -0.045 -0.150 -0.150 -0.169 -0.134 -0.135
missing) MixNChi -0.188 | -0.428 -0.119 -0.120 -0.172 -0.132 -0.034 -0.170 -0.177 -0.140 -0.109 -0.123

* “Qveral” meansthat the four missing rate categories are combined.



Table 5.2.6.3—Biases of median estimates (overall )

Missing Mean Ratio Hot Proc Adj.
M echanism Distribution | Incomp Imp. Imp. Deck Random Mean+e Ratio+e ABB BB Impute  Schafer DA
1. MCAR Normal -0.013 | -0.003 0.008 -0.011 -0.006 0.001 -0.005 -0.004 -0.004 -0.009
Dexp -0.007 | -0.007 0.006 0.005 0.001 0.002 0.000 -0.003 -0.001 0.006

MixNorm -0.009 | 0.005 0.011 -0.003 0.008 0.002 0.001 -0.002 -0.008 -0.005

MixNChi 0.000 | 0.029 0.011 0.011 0.010 0.019 0.014 0.044 -0.002 0.017

2. Unconfounded  Normal -0.001| 0.005 -0.001 0.011 0.005 0.008 0.000 0.008 0.011 -0.001 0.000 0.006
(tail values Dexp -0.007 | -0.006 0.001 0.008 -0.001 -0.001 -0.007 0.002 -0.010 0.000 -0.003 -0.002
more likely MixNorm -0.004 | -0.005 -0.001 0.008 -0.001 -0.004 0.002 0.003 0.004 0.002 -0.005 0.000
missing) MixNChi 0.003 | 0.025 -0.007 0.028 0.008 0.013 -0.002 0.016 0.011 -0.010 0.000 0.012
3. Unconfounded  Normal -0.099 | -0.097 0.021 -0.015 -0.094 -0.094 -0.024 -0.090 -0.096 0.006 -0.003 -0.085
(large values Dexp -0.115| -0.118 0.026 -0.025 -0.103 -0.115 -0.026 -0.111 -0.102 0.006 -0.008 -0.093
more likely MixNorm -0.116 | -0.106  0.026 -0.011 -0.107 -0.112 -0.022 -0.115 -0.104 0.007 -0.002 -0.093
missing) MixNChi -0.124 | -0.118 0.014 -0.030 -0.116 -0.114 -0.048 -0.110 -0.113 -0.021  -0.033 -0.100

4. Unconfounded Normal 0.011| 0.008 0.056 0.004 0.028 0.013 0.035 0.019 0.020 -0.014 0.001  0.023
(Center values  Dexp -0.022 | -0.006 0.061 -0.026 -0.019 -0.005 0.025 -0.004 -0.006 -0.019 -0.002 -0.021
more likely MixNorm 0.005| 0.010 0.056 -0.007 0.018 0.014 0.032 0.022 0.026 -0.008 0.001 0.015
missing) MixNChi -0.006 | 0.082 0.118 0.010 0.007 0.028 0.047 0.006 0.009 -0.025 0.003  0.005

5. Confounded Normal -0.011| 0.007 0.015 -0.003 0.006 -0.002 0.004 -0.005 0.004 -0.003 0.001  0.001
(tail values Dexp -0.002 | -0.001 0.024 0.011 0.008 0.005 0.013 0.006 0.002 0.001 0.010 0.003
more likely MixNorm -0.012 | -0.008 0.003 -0.001 -0.002 -0.009 -0.006 -0.004 -0.004 -0.007 -0.020 0.001
missing) MixNChi 0.008 | 0.004 0.018 0.042 0.014 0.016 0.014 0.017 0.011 0.003 0.019  0.020

* “Overal” means that the four missing rate categories are combined.



5.2.7  Averageimputétion error

Average imputation error is defined as

N
\/r_nel(yi_yi) :

where m is the number of missng vaues, y; isthe true vaue which isintentiondly set to missng,
and y istheimputed vaue for thei-th missng case. That an imputation method has smaller
average imputation errors only implies that the method provides imputations on average closer
to the red vadues. This does not necessarily means thet it gives more accurate estimates for al
types of gatidtics, dthough thisistruein many stuations.

Tables5.2.7.1-5.2.7.5 present average imputation errors for the combined missing rate
categories and each separate missing rate category, respectively. The figuresin the tables have
been stlandardized by dividing the true standard deviation from the origind imputation errors.

Across dl missng mechanisms, the random imputation, mean with disturbance imputation, ABB,
BB, and adjusted data augmentation methods dl have the smilar imputation errorsthat are
ggnificantly larger than the imputation errors for the other methods for dmost al digtributions, all
missing rates, and dl missing categories.

The ratio imputation method dways has the smalest or close to smdlest average imputation
errors. Schafer’ s software and PROC IMPUTE are comptitive candidates. These three
methods have subgtantialy smaler average imputation errors than the others. The hot deck,
ratio with disturbance imputation, and mean imputation methods st in the middle in terms of
average imputation error. They are sgnificantly worse than the three best methods, but they are
better than the worst five methods. Mean imputation has very small imputation errors for missng
mechanism (4) because center vaues are more likely missing with this missng mechanism and
the mean imputation method imputes the mean vaues for them.

It isdso noticed that most methods give fairly congstent average imputation errors, while
PROC IMPUTE and hot deck have much larger average imputation errors for the mixed
digribution of norma and Chi-square than they do with the other three distributions for all
missing mechanisms except mechanism (4). This probably indicates that these two methods are
not very good at recovering tail or large missing values.

The relative performance of the imputation methods in terms of average imputation error isvery
congstent across the missing rate categories.
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Table 5.2.7.1—Averageimputation error (overall ")

Missing Missing | Mean Ratio Hot Proc Adj.
M echanism Distribution rates Imp. Imp. Deck Random Mean+e Ratio+e ABB BB Impute Schafer DA
1. MCAR Normal 24.7% | 1.008 0.971 1.402 1.406 1406 1432 0.671 0.607  1.405
Dexp 25.0% | 0.970 1.068 1.392 1411 1375 1393 0.584 0.611 1.394

MixNorm 249% | 0.997 1.114 1.378 1.386 1397 1371 0591 0.626  1.388

MixNChi 24.9% | 0.989 1.721 1.362 1.417 1386 1477 0.836 0.628  1.396

2. Unconfounded Normal 17.7% | 1.258 0.496 1.330 1.581 1.556 1.056 1556 1569 0.671 0.516  1.622
(tail values Dexp 18.0% [ 1.438 0.567 1.594 1.671 1.678 1.006 1653 1.670 0.576 0.521 1.746
more likely MixNorm 185% | 1.359 0.543 1.558 1.597 1.615 1.033 1605 1.612 0.576 0.519 1.654
missing) MixNChi 16.8% | 1.759 0.723 2.141 1.905 1.896 1.027 1911 1920 1.378 0.481 1.992
3. Unconfounded  Normal 95% | 1244 0.609 0.995 1574 1.566 1183 1580 1.601 0.825 0.742 1.534
(large values Dexp 9.2% | 1.225 0.638 1.150 1571 1.579 1129 1582 1560 0.919 0.769 1.534
more likely MixNorm 9.8% | 1227 0.616 1.081 1.554 1.558 1119 1583 1568 0.924 0.739 1.512
missing) MixNChi 9.1% | 1467 0.618 1.638 1.702 1.739 1105 1735 1775 1.295 0.736  1.684

4. Unconfounded Normal 225% | 0.781 0.737 1.042 1.307 1.317 1300 1.332 1346 0.844 0.951 1.258
(Center values  Dexp 19.6% [ 0.762 0.739 1.064 1.307 1.303 1277 1310 1330 0.841 0.941 1.254
more likely MixNorm 21.0% | 0.766 0.722 1.011 1.328 1.331 1300 1329 1331 0.833 0.939 1.272
missing) MixNChi 239% | 0.781 0.774 1.103 1.375 1.343 1321 1420 1321 0.789 0.969 1.285

5. Confounded Normal 251% | 1.332 0978 1.382 1.546 1.557 1405 1569 1557 1.167 1.237 1560
(tail values Dexp 26.9% | 1.379 1.101 1431 1.570 1.556 1414 1580 1564 1.239 1291 1581
more likely MixNorm 27.1% | 1.378 1.094 1.419 1573 1.575 1420 1561 1579 1.223 1.287 1587
missing) MixNChi 27.1% | 1663 1416 1.632 1.746 1.740 1.602 1745 1.736 1.569 1423 1.776

* “QOverall” means that the four missing rate categories are combined. Average imputation errors for each separate missing rate category are reported in tables

527.2t052.75.



Table 5.2.7.2—Average imputation error with about 10% missing values”

Missing Mean Ratio Hot Proc
M echanism Distribution Imp. Imp. Deck Random Mean+e Ratio+e ABB BB Impute  Schafer  Adj DA
1. MCAR Normal 1.061 0.822 1.450 1.375 1.440 1.452 0.641 0.632 1.458
Dexp 0.993 0.782 1.358 1.401 1.368 1.366 0.583 0.634 1.377
MixNorm 1.032 0.962 1.323 1.417 1.387 1.476 0.635 0.615 1.330
MixNChi 1.164 1.077 1.522 1.585 1.540 1.848 1.162 0.545 1.567
2. Unconfounded Normal 1.285 0.472 1.014 1.683 1.641 1111 1.557 1.585 0.479 0.523 1.728
(tail values Dexp 1.558 0.475 1.615 1.865 1.802 0.973 1.774 1.781 0.649 0.514 1.924
more likely MixNorm 1.510 0.511 1.656 1.726 1.764 1.066 1.728 1.702 0.667 0.546 1.755
missing) MixNChi 2.288 0.706 2.420 2.385 2.394 1.049 2.391 2.386 1.485 0.474 2.458
3. Unconfounded  Normal 1.272 0.588 0.948 1.560 1.616 1.167 1.619 1.635 0.737 0.708 1.546
(large values Dexp 1.306 0.634 1.040 1.643 1.609 1.070 1.570 1.725 0.883 0.757 1.628
more likely MixNorm 1.291 0.685 1.252 1.613 1.589 1.148 1.692 1.636 0.818 0.763 1.597
missing) MixNChi 1.909 0.672 2.144 2.052 2.150 1.221 2.091 2.094 1.578 0.760 2.001
4. Unconfounded Normal 0.771 0.775 1.036 1.267 1.323 1.273 1.246 1.276 0.835 0.950 1.246
(Center values  Dexp 0.647 0.650 1.008 1.167 1.178 1.202 1.199 1.246 0.779 0.899 1.147
more likely MixNorm 0.768 0.758 0.981 1.326 1.308 1.227 1.276 1.231 0.846 0.953 1.318
missing) MixNChi 1.138 1.143 1.295 1.666 1.505 1.475 1411 1.449 1.120 1.233 1.581
5. Confounded Normal 1412 0.981 1411 1.755 1.646 1.342 1.662 1.724 1.205 1.271 1.769
(tail values Dexp 1.470 1.158 1.523 1.703 1.698 1.500 1.742 1.730 1.246 1.379 1.696
more likely MixNorm 1511 1.234 1.560 1.751 1.747 1.542 1.679 1.741 1.332 1.432 1.752
missing) MixNChi 2.212 1.886 2.154 2.348 2.377 2.079 2.349 2.268 2.163 1.930 2.369

* There are about 5% missing values for missing mechanism 3.



Table 5.2.7.3—Average imputation error with about 20% missing values”

Missing Mean Ratio Hot Proc
M echanism Distribution Imp. Imp. Deck Random Mean+e Ratio+e ABB BB Impute  Schafer  Adj DA
1. MCAR Normal 0.983 0.855 1.430 1.389 1.377 1.416 0.609 0.583 1.434
Dexp 1.013 0.984 1.447 1.437 1.376 1.424 0.601 0.592 1.450
MixNorm 1.021 0.966 1.378 1.352 1.428 1.383 0.599 0.628 1.399
MixNChi 1.154 1.362 1.496 1511 1.433 1.389 0.774 0.684 1.525
2. Unconfounded Normal 1.307 0.520 1.286 1.662 1.560 1.088 1.586 1.612 0.618 0.514 1.709
(tail values Dexp 1.497 0.534 1.607 1.711 1.736 1.040 1.727 1.673 0.582 0.508 1.775
more likely MixNorm 1.340 0.543 1.581 1.556 1.648 1.061 1.536 1.617 0.571 0.530 1.611
missing) MixNChi 1.649 0.751 2.306 1.782 1.838 1.083 1.823 1.885 1.105 0.490 1.902
3. Unconfounded Normal 1.274 0.622 1.052 1.580 1.565 1.186 1.560 1.687 0.730 0.745 1.562
(large values Dexp 1.315 0.694 1.249 1.712 1.720 1.192 1.624 1.616 0.840 0.805 1.673
more likely MixNorm 1.289 0.580 1.124 1.647 1.615 1.105 1.548 1.601 0.991 0.650 1.627
missing) MixNChi 1.635 0.632 1.773 1.847 1.852 1.002 1.813 1.905 1.540 0.732 1.844
4. Unconfounded Normal 0.718 0.703 1.033 1.264 1.256 1.273 1.328 1.277 0.828 0.929 1.235
(Center values  Dexp 0.772 0.762 1.091 1.300 1.292 1.336 1.284 1.379 0.851 0.922 1.250
more likely MixNorm 0.735 0.705 0.984 1.241 1.268 1.318 1.269 1.297 0.808 0.920 1.208
missing) MixNChi 0.800 0.805 1.063 1.328 1.372 1.254 1.301 1.491 0.796 0.992 1.273
5. Confounded Normal 1.364 0.994 1.359 1.616 1.608 1.428 1.608 1.583 1.158 1.269 1.633
(tail values Dexp 1.472 1.145 1.468 1.708 1.673 1.524 1.661 1.693 1.266 1.337 1.718
more likely MixNorm 1.436 1.064 1.422 1.645 1.641 1.413 1.659 1.683 1.243 1.297 1.671
missing) MixNChi 1.777 1.539 1.727 1.841 1.835 1.677 1.861 1.860 1.617 1.513 1.868

* There are about 10% missing values for missing mechanism 3.



Table 5.2.7.4—Average imputation error with about 30% missing values”

Missing Mean Ratio Hot Proc
M echanism Distribution Imp. Imp. Deck Random Mean+e Ratio+e ABB BB Impute  Schafer  Adj DA
1. MCAR Normal 1.014 0.991 1.381 1.413 1.431 1.433 0.669 0.608 1.386
Dexp 0.972 1.059 1.347 1.440 1.416 1.370 0.601 0.638 1.350
MixNorm 1.003 1.118 1.369 1.407 1.410 1.364 0.550 0.615 1.372
MixNChi 0.919 1.677 1.358 1.405 1.395 1.390 0.791 0.667 1.334
2. Unconfounded Normal 1.262 0.482 1.453 1.552 1.529 1.011 1.589 1.567 0.679 0.526 1.602
(tail values Dexp 1.423 0.624 1.652 1.626 1.661 1.045 1.640 1.662 0.573 0.530 1.708
more likely MixNorm 1.385 0.587 1.528 1.634 1.619 1.040 1.627 1.639 0.565 0.516 1.707
missing) MixNChi 1.745 0.646 2.109 1.843 1.873 0.957 1.908 1.881 1.558 0.484 1.956
3. Unconfounded Normal 1.226 0.622 0.971 1.609 1.592 1.161 1.588 1.569 0.800 0.767 1.565
(large values Dexp 1.191 0.598 1.203 1531 1.550 1.108 1.548 1.538 0.909 0.747 1.492
more likely MixNorm 1.219 0.628 1112 1511 1.611 1.132 1.631 1.602 0.911 0.790 1.459
missing) MixNChi 1.369 0.593 1.616 1.662 1.712 1.130 1.727 1.781 1.152 0.685 1.626
4. Unconfounded Normal 0.766 0.732 1.018 1.284 1.323 1.303 1.347 1.342 0.835 0.947 1.231
(Center values  Dexp 0.761 0.729 1.027 1.328 1.363 1.270 1.290 1.327 0.825 0.955 1.281
more likely MixNorm 0.747 0.709 1.068 1.341 1.351 1.304 1.311 1.363 0.834 0.951 1.276
missing) MixNChi 0.642 0.629 0.846 1.201 1.244 1.227 1.285 1.242 0.657 0.841 1.096
5. Confounded Normal 1.328 0.970 1.380 1.518 1.567 1.418 1.564 1.544 1.161 1.220 1.537
(tail values Dexp 1.398 1111 1.475 1.579 1.570 1.399 1.621 1.581 1.292 1.325 1.597
more likely MixNorm 1.366 1.110 1.407 1.576 1.577 1.414 1.539 1.564 1.225 1.301 1.585
missing) MixNChi 1.582 1.356 1.580 1.682 1.666 1.547 1.669 1.663 1.476 1.369 1.718

* There are about 15% missing values for missing mechanism 3.
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Table 5.2.7.5—Average imputation error with about 40% missing values”

Missing Mean Ratio Hot Proc
M echanism Distribution Imp. Imp. Deck Random Mean+e Ratio+e ABB BB Impute  Schafer  Adj DA
1. MCAR Normal 1.005 1.043 1.390 1.417 1.394 1.435 0.709 0.614 1.393
Dexp 0.940 1.172 1.405 1.377 1.346 1.400 0.562 0.595 1.401
MixNorm 0.971 1.213 1.400 1.378 1.373 1.341 0.605 0.637 1.409
MixNChi 0.909 2.002 1.255 1.337 1.317 1.488 0.811 0.586 1.336
2. Unconfounded Normal 1.209 0.499 1.353 1.510 1.543 1.051 1.505 1.535 0.754 0.505 1.538
(tail values Dexp 1.358 0.567 1.519 1.602 1.600 0.956 1.560 1.630 0.544 0.525 1.686
more likely MixNorm 1.287 0.516 1531 1.541 1.529 0.994 1.585 1.553 0.551 0.505 1.599
missing) MixNChi 1.602 0.769 1.875 1.835 1.719 1.027 1.754 1.756 1.380 0.474 1.878
3. Unconfounded  Normal 1.232 0.597 0.998 1.546 1.526 1.205 1571 1.565 0.920 0.730 1.488
(large values Dexp 1.173 0.638 1.083 1.499 1511 1.127 1.588 1.491 0.977 0.770 1.455
more likely MixNorm 1.174 0.602 0.959 1512 1.466 1.107 1521 1.495 0.928 0.734 1.454
missing) MixNChi 1.254 0.612 1.356 1.504 1.526 1.109 1.556 1.561 1.122 0.769 1.504
4. Unconfounded Normal 0.826 0.749 1.066 1.356 1.341 1.319 1.345 1.401 0.862 0.966 1.292
(Center values  Dexp 0.783 0.757 1.092 1.327 1.291 1.273 1.362 1.330 0.863 0.948 1.261
more likely MixNorm 0.796 0.732 0.985 1.361 1.352 1.307 1.386 1.347 0.841 0.935 1.288
missing) MixNChi 0.739 0.725 1.225 1.423 1.354 1.369 1.562 1.260 0.760 0.963 1.325
5. Confounded Normal 1.300 0.975 1.388 1.474 1.502 1.400 1.530 1.510 1.167 1.225 1.486
(tail values Dexp 1.292 1.055 1.351 1.456 1.445 1.345 1.460 1.436 1.180 1.217 1.466
more likely MixNorm 1.319 1.056 1.386 1.479 1.491 1.394 1.492 1.489 1.182 1.228 1.495
missing) MixNChi 1.447 1.203 1.418 1.512 1.499 1.426 1.502 1516 1.395 1.215 1.543

* There are about 20% missing values for missing mechanism 3.
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97-30 ACT’s NAEP Redesign Project: Assessment Design is the Key to Useful and Stable Steven Gorman
Assessment Results
97-31 NAEP Reconfigured: An Integrated Redesign of the National Assessment of Educational Steven Gorman
Progress
97-32 Innovatgi]ve Solutions to Intractable Large Scale Assessment (Problem 2: Background Steven Gorman
Questionnaires)
97-37 Optimal Rating Procedures and Methodology for NAEP Open-ended Items Steven Gorman
9744 Development of a SASS 1993-94 School-Level Student Achievement Subfile: Using Michael Ross
State Assessments and State NAEP, Feasibility Study
98-15 Development of a Prototype System for Accessing Linked NCES Data Steven Kaufman
199905  Procedures Guide for Transcript Studies Dawn Nelson
199906 1998 Revision of the Secondary School Taxonomy Dawn Nelson
2001-07 A Comparison of the National Assessment of Educationa Progress (NAEP), the Third Arnold Goldstein
International Mathematics and Science Study Repeat (TIMSS-R), and the Programme
for International Student Assessment (PISA)
200108  Assessing the Lexile Framework: Results of a Panel Meeting Sheida White
2001-11  Impact of Selected Background Variables on Students NAEP Math Performance Arnold Goldstein
2001-13  The Effects of Accommodations on the Assessment of LEP Studentsin NAEP Arnold Goldstein
National Education L ongitudinal Study of 1988 (NEL S:88)
95-04 National Education Longitudina Study of 1988: Second Follow-up Questionnaire Content  Jeffrey Owings
Areas and Research Issues
95-05 National Education Longitudinal Study of 1988: Conducting Trend Analyses of NLS-72, Jeffrey Owings
HS& B, and NELS:88 Seniors
95-06 National Education Longitudinal Study of 1988: Conducting Cross-Cohort Comparisons Jeffrey Owings
Using HS& B, NAEP, and NEL S:88 Academic Transcript Data
95-07 National Education Longitudinal Study of 1988: Conducting Trend Analyses HS& B and Jeffrey Owings
NEL S:88 Sophomore Cohort Dropouts
95-12 Rural Education Data User’s Guide Samud Peng
95-14 Empirical Evaluation of Social, Psychological, & Educational Construct Variables Used Samuel Peng
in NCES Surveys
96-03 National Education Longitudinal Study of 1988 (NEL S:88) Research Framework and Jeffrey Owings
Issues
98-06 National Education Longitudina Study of 1988 (NEL S:88) Base Y ear through Second Ralph Lee
Follow-Up: Final Methodology Report
98-09 High School Curriculum Structure: Effects on Coursetaking and Achievement in Jeffrey Owings
Mathematics for High School Graduates—An Examination of Data from the National
Education Longitudinal Study of 1988
98-15 Development of a Prototype System for Accessing Linked NCES Data Steven Kaufman
199905  Procedures Guide for Transcript Studies Dawn Nelson
199906 1998 Revision of the Secondary School Taxonomy Dawn Nelson
1999-15  Projected Postsecondary Outcomes of 1992 High School Graduates AuroraD’Amico
2001-16  Imputation of Test Scoresin the National Education Longitudinal Study of 1988 Ralph Lee
National Household Education Survey (NHES)
95-12 Rural Education Data User’s Guide Samuel Peng
96-13 Estimation of Response Bias in the NHES:95 Adult Education Survey Steven Kaufman
96-14 The 1995 National Household Education Survey: Reinterview Results for the Adult Steven Kaufman
Education Component
96-20 1991 National Household Education Survey (NHES:91) Questionnaires: Screener, Early Kathryn Chandler
Childhood Education, and Adult Education
96-21 1993 National Household Education Survey (NHES:93) Questionnaires: Screener, School Kathryn Chandler
Readiness, and School Safety and Discipline
96-22 1995 National Household Education Survey (NHES:95) Questionnaires: Screener, Early Kathryn Chandler

Childhood Program Participation, and Adult Education



No. Title NCES contact

9629 Undercoverage Bias in Estimates of Characteristics of Adultsand 0- to 2-Year-Oldsinthe  Kathryn Chandler
1995 National Household Education Survey (NHES:95)

96-30 Comparison of Estimates from the 1995 National Household Education Survey Kathryn Chandler
(NHES:95)

97-02 Telephone Coverage Bias and Recorded I nterviews in the 1993 National Household Kathryn Chandler
Education Survey (NHES:93)

97-03 1991 and 1995 National Household Education Survey Questionnaires: NHES:91 Screener,  Kathryn Chandler
NHES:91 Adult Education, NHES:95 Basic Screener, and NHES:95 Adult Education

97-04 Design, Data Collection, Monitoring, Interview Administration Time, and Data Editing in Kahryn Chandler
the 1993 National Household Education Survey (NHES:93)

97-05 Unit and Item Response, Weighting, and Imputation Procedures in the 1993 National Kathryn Chandler
Household Education Survey (NHES:93)

97-06 Unit and Item Response, Weighting, and Imputation Procedures in the 1995 National Kathryn Chandler
Household Education Survey (NHES:95)

97-08 Design, Data Collection, Interview Timing, and Data Editing in the 1995 National Kathryn Chandler
Household Education Survey

97-19 National Household Education Survey of 1995: Adult Education Course Coding Manual Peter Stowe

97-20 National Household Education Survey of 1995: Adult Education Course Code Merge Peter Stowe
Files User’'s Guide

97-25 1996 National Household Education Survey (NHES:96) Questionnaires: Kathryn Chandler
Screener/Household and Library, Parent and Family Involvement in Education and
Civic Involvement, Y outh Civic Involvement, and Adult Civic Involvement

97-28 Comparison of Estimates in the 1996 National Household Education Survey Kathryn Chandler

97-34 Comparison of Estimates from the 1993 National Household Education Survey Kathryn Chandler

97-35 Design, Data Collection, Interview Administration Time, and Data Editing in the 1996 Kathryn Chandler
National Household Education Survey

97-38 Reinterview Results for the Parent and Youth Components of the 1996 National Kathryn Chandler
Household Education Survey

97-39 Undercoverage Bias in Estimates of Characteristics of Households and Adultsinthe 1996 ~ Kathryn Chandler
National Household Education Survey

9740 Unit and Item Response Rates, Weighting, and Imputation Procedures in the 1996 Kathryn Chandler
National Household Education Survey

98-03 Adult Education in the 1990s: A Report on the 1991 National Household Education Peter Stowe
Survey

98-10 Adult Education Participation Decisions and Barriers: Review of Conceptual Frameworks ~ Peter Stowe
and Empirical Studies

National L ongitudinal Study of the High School Class of 1972 (NL S-72)
95-12 Rural Education Data User’s Guide Samue Peng

National Postsecondary Student Aid Study (NPSAS)
96-17 National Postsecondary Student Aid Study: 1996 Field Test Methodology Report
2000-17  National Postsecondary Student Aid Study:2000 Field Test Methodology Report

National Study of Postsecondary Faculty (NSOPF)

97-26 Strategies for Improving Accuracy of Postsecondary Faculty Lists
98-15 Development of a Prototype System for Accessing Linked NCES Data
200001 1999 National Study of Postsecondary Faculty (NSOPF:99) Field Test Report

Postsecondary Education Descriptive Analysis Reports (PEDAR)
2000-11  Financia Aid Profile of Graduate Studentsin Science and Engineering

Private School Univer se Survey (PSS)

95-16 Intersurvey Consistency in NCES Private School Surveys

95-17 Estimates of Expenditures for Private K—12 Schools

96-16 Strategies for Collecting Finance Data from Private Schools

96-26 Improving the Coverage of Private Elementary-Secondary Schools

96-27 Intersurvey Consistency in NCES Private School Surveys for 1993-94

97-07 The Determinants of Per-Pupil Expenditures in Private Elementary and Secondary

Schools: An Exploratory Analysis

Andrew G. Malizio
Andrew G. Malizio

Linda Zimbler
Steven Kaufman
Linda Zimbler

AuroraD’ Amico

Steven Kaufman
Stephen Broughman
Stephen Broughman
Steven Kaufman
Steven Kaufman
Stephen Broughman



No. Title NCES contact
97-22 Collection of Private School Finance Data: Development of a Questionnaire Stephen Broughman
98-15 Development of a Prototype System for Accessing Linked NCES Data Steven Kaufman

200004  Selected Papers on Education Surveys: Papers Presented at the 1998 and 1999 ASA and Dan Kasprzyk
1999 AAPOR Mestings
2000-15  Feasibility Report: School-Level Finance Pretest, Private School Questionnaire Stephen Broughman

Recent College Graduates (RCG)

98-15

Development of a Prototype System for Accessing Linked NCES Data

Schoolsand Staffing Survey (SASS)

9401
94-02
94-03
94-04
94-06
9501
95-02
95-03
95-08
95-09
95-10
95-11

95-12
95-14

95-15

95-16
95-18

96-01

96-02

96-05
96-06

96-07
96-09

96-10
96-11

96-12
96-15
96-23
96-24
96-25
96-28

97-01

Schools and Staffing Survey (SASS) Papers Presented at Meetings of the American
Statistical Association

Generalized Variance Estimate for Schools and Staffing Survey (SASS)

1991 Schools and Staffing Survey (SASS) Reinterview Response Variance Report

The Accuracy of Teachers' Self-reports on their Postsecondary Education: Teacher
Transcript Study, Schools and Staffing Survey

Six Papers on Teachers from the 1990-91 Schools and Staffing Survey and Other Related
Surveys

Schools and Staffing Survey: 1994 Papers Presented at the 1994 Meeting of the American
Statistical Association

QED Estimates of the 1990-91 Schools and Staffing Survey: Deriving and Comparing
QED School Estimates with CCD Estimates

Schools and Staffing Survey: 1990-91 SASS Cross-Questionnaire Analysis

CCD Adjustment to the 1990-91 SASS: A Comparison of Estimates

The Results of the 1993 Teacher List Validation Study (TLVS)

The Results of the 1991-92 Teacher Follow-up Survey (TFS) Reinterview and Extensive
Reconciliation

Measuring Instruction, Curriculum Content, and Instructional Resources. The Status of
Recent Work

Rural Education Data User’s Guide

Empirical Evaluation of Social, Psychological, & Educational Construct Variables Used
in NCES Surveys

Classroom Instructional Processes: A Review of Existing Measurement Approaches and
Their Applicability for the Teacher Follow-up Survey

Intersurvey Consistency in NCES Private School Surveys

An Agenda for Research on Teachers and Schools: Revisiting NCES' Schools and
Staffing Survey

Methodological Issues in the Study of Teachers' Careers: Critical Features of a Truly
Longitudina Study

Schools and Staffing Survey (SASS): 1995 Selected papers presented at the 1995 Meeting
of the American Statistical Association

Cognitive Research on the Teacher Listing Form for the Schools and Staffing Survey

The Schools and Staffing Survey (SASS) for 1998-99: Design Recommendations to
Inform Broad Education Policy

Should SASS Measure I nstructional Processes and Teacher Effectiveness?

Making Data Relevant for Policy Discussions. Redesigning the School Administrator
Questionnaire for the 1998-99 SASS

1998-99 Schools and Staffing Survey: Issues Related to Survey Depth

Towards an Organizational Database on America's Schools: A Proposal for the Future of
SASS, with comments on School Reform, Governance, and Finance

Predictors of Retention, Transfer, and Attrition of Special and General Education
Teachers: Data from the 1989 Teacher Followup Survey

Nested Structures: District-Level Datain the Schools and Staffing Survey

Linking Student Data to SASS: Why, When, How

National Assessments of Teacher Quality

Measures of Inservice Professional Development: Suggested Items for the 1998-1999
Schools and Staffing Survey

Student Learning, Teaching Quality, and Professional Development: Theoretical
Linkages, Current Measurement, and Recommendations for Future Data Collection

Selected Papers on Education Surveys: Papers Presented at the 1996 Meeting of the
American Statistical Association

Steven Kaufman

Dan Kasprzyk
Dan Kasprzyk
Dan Kasprzyk
Dan Kasprzyk
Dan Kasprzyk
Dan Kasprzyk
Dan Kasprzyk
Dan Kasprzyk
Dan Kasprzyk
Dan Kasprzyk
Dan Kasprzyk
Sharon Bobbitt &
John Ralph
Samuel Peng
Samuel Peng
Sharon Bobbitt

Steven Kaufman
Dan Kasprzyk

Dan Kasprzyk
Dan Kasprzyk

Dan Kasprzyk
Dan Kasprzyk

Dan Kasprzyk
Dan Kasprzyk

Dan Kasprzyk
Dan Kasprzyk

Dan Kasprzyk
Dan Kasprzyk
Dan Kasprzyk
Dan Kasprzyk
Dan Kasprzyk
Mary Rollefson

Dan Kasprzyk



No. Title NCES contact
9707 The Determinants of Per-Pupil Expendituresin Private Elementary and Secondary Stephen Broughman
Schools: An Exploratory Analysis
97-09 Status of Data on Crime and Violence in Schools: Final Report Lee Hoffman
97-10 Report of Cognitive Research on the Public and Private School Teacher Questionnaires Dan Kasprzyk
for the Schools and Staffing Survey 1993-94 School Y ear
97-11 International Comparisons of Inservice Professional Development Dan Kasprzyk
97-12 Measuring School Reform: Recommendations for Future SASS Data Collection Mary Rollefson
97-14 Optimal Choice of Periodicities for the Schools and Staffing Survey: Modeling and Steven Kaufman
Analysis
97-18 Improving the Mail Return Rates of SASS Surveys: A Review of the Literature Steven Kaufman
97-22 Collection of Private School Finance Data: Development of a Questionnaire Stephen Broughman
97-23 Further Cognitive Research on the Schools and Staffing Survey (SASS) Teacher Listing Dan Kasprzyk
Form
9741 Selected Papers on the Schools and Staffing Survey: Papers Presented at the 1997 Meeting  Steve Kaufman
of the American Statistical Association
9742 Improving the Measurement of Staffing Resources at the School Level: The Development  Mary Rollefson
of Recommendations for NCES for the Schools and Staffing Survey (SASS)
9744 Development of a SASS 1993-94 School-Level Student Achievement Subfile: Using Michael Ross
State Assessments and State NAEP, Feasibility Study
98-01 Collection of Public School Expenditure Data: Development of a Questionnaire Stephen Broughman
98-02 Response Variance in the 1993-94 Schools and Staffing Survey: A Reinterview Report Steven Kaufman
98-04 Geographic Variations in Public Schools' Costs William J. Fowler, Jr.
98-05 SASS Documentation: 1993-94 SASS Student Sampling Problems; Solutions for Steven Kaufman
Determining the Numerators for the SASS Private School (3B) Second-Stage Factors
98-08 The Redesign of the Schools and Staffing Survey for 1999-2000: A Position Paper Dan Kasprzyk
98-12 A Bootstrap Variance Estimator for Systematic PPS Sampling Steven Kaufman
98-13 Response Variance in the 1994-95 Teacher Follow-up Survey Steven Kaufman
98-14 Variance Estimation of Imputed Survey Data Steven Kaufman
98-15 Development of a Prototype System for Accessing Linked NCES Data Steven Kaufman
98-16 A Feasibility Study of Longitudinal Design for Schools and Staffing Survey Stephen Broughman
199902  Tracking Secondary Use of the Schools and Staffing Survey Data: Preliminary Results Dan Kasprzyk
1999-04  Measuring Teacher Qualifications Dan Kasprzyk
199907  Collection of Resource and Expenditure Data on the Schools and Staffing Survey Stephen Broughman
1999-08  Measuring Classroom Instructional Processes: Using Survey and Case Study Fieldtest Dan Kasprzyk
Results to Improve Item Construction
1999-10  What Users Say About Schools and Staffing Survey Publications Dan Kasprzyk
1999-12  1993-94 Schools and Staffing Survey: Data File User’s Manual, Volume I11: Public-Use Kerry Gruber
Codebook
199913  1993-94 Schools and Staffing Survey: Data File User’s Manual, Volume 1V: Bureau of Kerry Gruber
Indian Affairs (BIA) Restricted-Use Codebook
1999-14  1994-95 Teacher Followup Survey: Data File User’'s Manual, Restricted-Use Codebook Kerry Gruber
1999-17  Secondary Use of the Schools and Staffing Survey Data Susan Wiley
200004  Selected Papers on Education Surveys: Papers Presented at the 1998 and 1999 ASA and Dan Kasprzyk
1999 AAPOR Mestings
2000-10 A Research Agendafor the 1999-2000 Schools and Staffing Survey Dan Kasprzyk
2000-13  Non-professional Staff in the Schools and Staffing Survey (SASS) and Common Core of Kerry Gruber
Data (CCD)
2000-18  Feasibility Report: School-Level Finance Pretest, Public School District Questionnaire Stephen Broughman

Third International Mathematicsand Science Study (TIM SS)

200101

2001-05
200107

Cross-National Variation in Educational Preparation for Adulthood: From Early
Adolescence to Y oung Adulthood

Using TIMSS to Analyze Correlates of Performance Variation in Mathematics

A Comparison of the National Assessment of Educational Progress (NAEP), the Third
International Mathematics and Science Study Repeat (TIMSS-R), and the Programme
for International Student Assessment (PISA)

Elvira Hausken

Patrick Gonzales
Arnold Goldstein



Listing of NCES Working Papers by Subject

No. Title NCES contact
Achievement (student) - mathematics
200105 Using TIMSS to Analyze Correlates of Performance Variation in Mathematics Patrick Gonzales
Adult education
96-14 The 1995 National Household Education Survey: Reinterview Results for the Adult Steven Kaufman
Education Component
96-20 1991 Nationa Household Education Survey (NHES:91) Questionnaires: Screener, Early Kathryn Chandler
Childhood Education, and Adult Education
96-22 1995 National Household Education Survey (NHES:95) Questionnaires: Screener, Early Kathryn Chandler
Childhood Program Participation, and Adult Education
98-03 Adult Education in the 1990s: A Report on the 1991 National Household Education Peter Stowe
Surv:
98-10 Adult Egl{cati on Participation Decisions and Barriers: Review of Conceptual Frameworks ~ Peter Stowe
and Empirical Studies
1999-11  Data Sources on Lifelong Learning Available from the Nationa Center for Education LisaHudson
Statistics
2000-16a Lifelong Learning NCES Task Force: Final Report Volume | LisaHudson
2000-16b  Lifdlong Learning NCES Task Force: Final Report Volumelll LisaHudson
Adult literacy—see Literacy of adults
American Indian — education
1999-13  1993-94 Schools and Staffing Survey: Data File User’s Manual, Volume 1V: Bureau of Kerry Gruber
Indian Affairs (BIA) Restricted-Use Codebook
Assessment/achievement
95-12 Rural Education Data User’s Guide Samue Peng
95-13 Assessing Students with Disabilities and Limited English Proficiency James Houser
97-29 Can State Assessment Data be Used to Reduce State NAEP Sample Sizes? Larry Ogle
97-30 ACT’s NAEP Redesign Project: Assessment Design is the Key to Useful and Stable Larry Ogle
Assessment Results
97-31 NAEP Reconfigured: An Integrated Redesign of the National Assessment of Educational Larry Ogle
Progress
97-32 Innovative Solutions to Intractable Large Scale Assessment (Problem 2: Background Larry Ogle
Questions)
97-37 Optimal Rating Procedures and Methodology for NAEP Open-ended Items Larry Ogle
9744 Development of a SASS 1993-94 School-Level Student Achievement Subfile: Using Michael Ross
State Assessments and State NAEP, Feasibility Study
98-09 High School Curriculum Structure: Effects on Coursetaking and Achievement in Jeffrey Owings
Mathematics for High School Graduates—An Examination of Data from the National
Education Longitudina Sudy of 1988
2001-07 A Comparison of the National Assessment of Educationa Progress (NAEP), the Third Arnold Goldstein
International Mathematics and Science Study Repeat (TIMSS-R), and the Programme
for International Student Assessment (PISA)
2001-11  Impact of Selected Background Variables on Students NAEP Math Performance Arnold Goldstein
2001-13  The Effects of Accommodations on the Assessment of LEP Studentsin NAEP Arnold Goldstein

Beginning studentsin postsecondary education

98-11

2001-04

Beginning Postsecondary Students Longitudinal Study First Follow-up (BPS:96-98) Field
Test Report

Beginning Postsecondary Students Longitudinal Study: 1996-2001 (BPS:1996/2001)
Field Test Methodology Report

AuroraD’ Amico

Paula K nepper



No. Title

NCES contact

Civic participation
97-25 1996 National Household Education Survey (NHES:96) Questionnaires:
Screener/Household and Library, Parent and Family Involvement in Education and
Civic Involvement, Y outh Civic Involvement, and Adult Civic Involvement

Climate of schools
95-14 Empirical Evaluation of Social, Psychological, & Educational Construct Variables Used
in NCES Surveys

Cost of education indices
94-05 Cost-of-Education Differentials Across the States

Coursetaking
95-12 Rural Education Data User’s Guide
98-09 High School Curriculum Structure: Effects on Coursetaking and Achievement in
Mathematics for High School Graduates—An Examination of Data from the National
Education Longitudina Study of 1988
199905  Procedures Guide for Transcript Studies
199906 1998 Revision of the Secondary School Taxonomy

Crime
97-09 Status of Data on Crime and Violence in Schools: Final Report

Curriculum
95-11 Measuring Instruction, Curriculum Content, and Instructional Resources. The Status of
Recent Work
98-09 High School Curriculum Structure: Effects on Coursetaking and Achievement in
Mathematics for High School Graduates—An Examination of Data from the National
Education Longitudina Study of 1988

Customer service
1999-10  What Users Say About Schools and Staffing Survey Publications
200002  Coordinating NCES Surveys: Options, Issues, Challenges, and Next Steps
200004  Selected Papers on Education Surveys. Papers Presented at the 1998 and 1999 ASA and
1999 AAPOR Mestings
2001-12  Customer Feedback on the 1990 Census Mapping Project

Data quality
97-13 Improving Data Quality in NCES: Databaseto-Report Process
2001-11  Impact of Selected Background Variables on Students NAEP Math Performance
2001-13  The Effects of Accommodations on the Assessment of LEP Studentsin NAEP

Data warehouse
200004  Selected Papers on Education Surveys. Papers Presented at the 1998 and 1999 ASA and
1999 AAPOR Mestings

Design effects
200003  Strengths and Limitations of Using SUDAAN, Stata, and WesVarPC for Computing
Variances from NCES Data Sets

Dropout rates, high school
95-07 National Education Longitudinal Study of 1988: Conducting Trend Analyses HS& B and
NEL S:88 Sophomore Cohort Dropouts

Early childhood education
96-20 1991 National Household Education Survey (NHES:91) Questionnaires: Screener, Early
Childhood Education, and Adult Education

Kathryn Chandler

Samud Peng

William J. Fowler, Jr.

Samuel Peng
Jeffrey Owings

Dawn Nelson
Dawn Nelson

Lee Hoffman

Sharon Bobbitt &
John Ralph
Jeffrey Owings

Dan Kasprzyk
VaenaPisko
Dan Kasprzyk

Dan Kasprzyk

Susan Ahmed
Arnold Goldstein
Arnold Goldstein

Dan Kasprzyk

Ralph Lee

Jeffrey Owings

Kathryn Chandler



No. Title NCES contact
96-22 1995 National Household Education Survey (NHES:95) Questionnaires: Screener, Early Kathryn Chandler
Childhood Program Participation, and Adult Education
97-24 Formulating a Design for the ECLS: A Review of Longitudinal Studies Jerry West
97-36 Measuring the Quality of Program Environmentsin Head Start and Other Early Childhood  Jerry West
Programs: A Review and Recommendations for Future Research
1999-01 A Birth Cohort Study: Conceptual and Design Considerations and Rationale Jerry West
200102  Measuring Father Involvement in Y oung Children's Lives: Recommendations for a Jerry West
Fatherhood Module for the ECLS-B
2001-03  Measures of Socio-Emotional Development in Middle School Elvira Hausken
200106  Papersfrom the Early Childhood Longitudinal Studies Program: Presented at the 2001 Jerry West

AERA and SRCD Meetings

Educational attainment

98-11 Beginning Postsecondary Students Longitudinal Study First Follow-up (BPS:96-98) Field
Test Report
2001-15  Baccalaureate and Beyond Longitudinal Study: 2000/01 Follow-Up Field Test
Methodology Report

Educational research
200002  Coordinating NCES Surveys: Options, Issues, Challenges, and Next Steps

Eighth-graders

200105 Using TIMSSto Analyze Correlates of Performance Variation in Mathematics
Employment
96-03 National Education Longitudina Study of 1988 (NEL S:88) Research Framework and
I ssues
98-11 Beginning Postsecondary Students Longitudinal Study First Follow-up (BPS:96-98) Field
Test Report
2000-16a Lifelong Learning NCES Task Force: Final Report Volumel
2000-16b  Lifdong Learning NCES Task Force: Fina Report Volume Il
200101  Cross-National Variation in Educational Preparation for Adulthood: From Early

Adolescence to Y oung Adulthood

Employment — after college

2001-15  Baccalaureate and Beyond Longitudinal Study: 2000/01 Follow-Up Field Test
Methodology Report
Engineering
2000-11  Financia Aid Profile of Graduate Studentsin Science and Engineering

Enrollment — after college
2001-15  Baccalaureate and Beyond Longitudinal Study: 2000/01 Follow-Up Field Test
Methodology Report

Faculty — higher education
97-26 Strategies for Improving Accuracy of Postsecondary Faculty Lists
200001 1999 National Study of Postsecondary Faculty (NSOPF:99) Field Test Report

Fathers—rolein education
2001-02  Measuring Father Involvement in Y oung Children's Lives: Recommendations for a
Fatherhood Module for the ECLS-B

Finance— elementary and secondary schools

9405 Cost-of-Education Differentials Across the States

96-19 Assessment and Analysis of School-Level Expenditures

98-01 Collection of Public School Expenditure Data: Development of a Questionnaire
199907  Collection of Resource and Expenditure Data on the Schools and Staffing Survey

AuroraD’Amico

Andrew G. Malizio

VaenaPisko

Patrick Gonzales

Jeffrey Owings
AuroraD’Amico
LisaHudson

LisaHudson
Elvira Hausken

Andrew G. Malizio

AuroraD’Amico

Andrew G. Madlizio

Linda Zimbler
Linda Zimbler

Jerry West

William J. Fowler, Jr.
William J. Fowler, Jr.
Stephen Broughman
Stephen Broughman



No. Title

NCES contact

1999-16  Mesasuring Resources in Education: From Accounting to the Resource Cost Model
Approach

Feasibility Report: School-Level Finance Pretest, Public School District Questionnaire

Evaluation of the Common Core of Data (CCD) Finance Data |mputations

2000-18
2001-14

Finance— postsecondary
97-27 Pilot Test of IPEDS Finance Survey
2000-14  IPEDS Finance Data Comparisons Under the 1997 Financial Accounting Standards for
Private, Not-for-Profit Institutes: A Concept Paper

Finance— private schools

95-17 Estimates of Expenditures for Private K—12 Schools
96-16 Strategies for Collecting Finance Data from Private Schools
97-07 The Determinants of Per-Pupil Expenditures in Private Elementary and Secondary
Schools: An Exploratory Analysis
97-22 Collection of Private School Finance Data: Development of a Questionnaire
199907  Collection of Resource and Expenditure Data on the Schools and Staffing Survey
2000-15  Feasibility Report: School-Level Finance Pretest, Private School Questionnaire
Geography
98-04 Geographic Variationsin Public Schools Costs
Graduate students
2000-11  Financia Aid Profile of Graduate Studentsin Science and Engineering

Graduates of postsecondary education

2001-15  Baccalaureate and Beyond Longitudinal Study: 2000/01 Follow-Up Field Test
Methodology Report
Imputation
200004  Selected Papers on Education Surveys: Papers Presented at the 1998 and 1999 ASA and
1999 AAPOR Meeting
2001-10  Comparison of Proc Impute and Schafer’s Multiple Imputation Software
2001-14  Evaluation of the Common Core of Data (CCD) Finance Data | mputations
2001-16  Imputation of Test Scoresin the National Education Longitudina Study of 1988
2001-17 A Study of Imputation Algorithms
Inflation
9743 Measuring Inflation in Public School Costs

Ingtitution data
200001 1999 National Study of Postsecondary Faculty (NSOPF:99) Field Test Report

Instructional resources and practices

95-11 Measuring Instruction, Curriculum Content, and Instructional Resources. The Status of
Recent Work
199908  Measuring Classroom Instructional Processes: Using Survey and Case Study Field Test

Results to Improve Item Construction

I nter national comparisons

97-11 International Comparisons of Inservice Professional Development
97-16 International Education Expenditure Comparability Study: Final Report, VVolume |
97-17 International Education Expenditure Comparability Study: Final Report, Volumell,
Quantitative Analysis of Expenditure Comparability
200101  Cross-National Variation in Educational Preparation for Adulthood: From Early
Adolescence to Y oung Adulthood
200107 A Comparison of the National Assessment of Educational Progress (NAEP), the Third

International Mathematics and Science Study Repeat (TIMSS-R), and the Programme
for International Student Assessment (PISA)

William J. Fowler, Jr.

Stephen Broughman
Frank Johnson

Peter Stowe
Peter Stowe

Stephen Broughman
Stephen Broughman
Stephen Broughman
Stephen Broughman

Stephen Broughman
Stephen Broughman

William J. Fowler, Jr.

AuroraD’Amico

Andrew G. Malizio

Dan Kasprzyk
Sam Peng
Frank Johnson

Relph Lee
Ralph Lee

William J. Fowler, Jr.

Linda Zimbler

Sharon Bobbitt &
John Ralph
Dan Kasprzyk

Dan Kasprzyk
Shelley Burns
Shelley Burns
Elvira Hausken

Arnold Goldstein



No. Title NCES contact
International comparisons— math and science achievement
200105 Using TIMSSto Analyze Correlates of Performance Variation in Mathematics Patrick Gonzales
Libraries
94-07 Data Comparability and Public Policy: New Interest in Public Library Data Papers Carrol Kindel
Presented at Meetings of the American Statistical Association
97-25 1996 National Household Education Survey (NHES:96) Questionnaires: Kathryn Chandler
Screener/Household and Library, Parent and Family Involvement in Education and
Civic Involvement, Y outh Civic Involvement, and Adult Civic Involvement
Limited English Proficiency
95-13 Assessing Students with Disabilities and Limited English Proficiency James Houser
200111  Impact of Selected Background Variables on Students' NAEP Math Performance Arnold Goldstein
2001-13  The Effects of Accommodations on the Assessment of LEP Studentsin NAEP Arnold Goldstein
Literacy of adults
98-17 Developing the National Assessment of Adult Literacy: Recommendations from Sheida White
Stakeholders
1999-09a 1992 National Adult Literacy Survey: An Overview Alex Sedlacek
1999-09b 1992 National Adult Literacy Survey: Sample Design Alex Sedlacek
1999-09c 1992 National Adult Literacy Survey: Weighting and Population Estimates Alex Sedlacek
1999-09d 1992 National Adult Literacy Survey: Development of the Survey Instruments Alex Sedlacek
1999-09e 1992 National Adult Literacy Survey: Scaling and Proficiency Estimates Alex Sedlacek
1999-09f 1992 National Adult Literacy Survey: Interpreting the Adult Literacy Scalesand Literacy  Alex Sedlacek
Levels
1999-09g 1992 National Adult Literacy Survey: Literacy Levels and the Response Probability Alex Sedlacek
Convention
1999-11  Data Sources on Lifelong Learning Available from the National Center for Education LisaHudson
Statistics
200005  Secondary Statistical Modeling With the National Assessment of Adult Literacy: Sheida White
Implications for the Design of the Background Questionnaire
200006  Using Telephone and Mail Surveys as a Supplement or Alternative to Door-to-Door Sheida White
Surveysin the Assessment of Adult Literacy
200007  “How Much Literacy is Enough?’ Issues in Defining and Reporting Performance Sheida White
Standards for the National Assessment of Adult Literacy
200008  Evaluation of the 1992 NALS Background Survey Questionnaire: An Analysis of Uses Sheida White
with Recommendations for Revisions
200009  Demographic Changes and Literacy Development in a Decade Sheida White
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